4.8 Article

Gut microbiome is linked to functions of peripheral immune cells in transition cows during excessive lipolysis

Journal

MICROBIOME
Volume 11, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s40168-023-01492-3

Keywords

Bile acids; Gut microbiome; Single-cell RNA sequencing; Targeted metabolomics

Categories

Ask authors/readers for more resources

This study investigated the relationship between postpartum immunosuppression in dairy cows with excessive lipolysis and the gut microbiome. It was found that immune cell functions were downregulated in cows with excessive lipolysis, and certain bacterial species in the gut microbiome were associated with this condition. Further analysis revealed that the synthesis of secondary bile acids (SBA) was significantly activated in cows with excessive lipolysis. The study concluded that altered microbial SBA synthesis may lead to postpartum immunosuppression.
Background Postpartum dairy cows experiencing excessive lipolysis are prone to severe immunosuppression. Despite the extensive understanding of the gut microbial regulation of host immunity and metabolism, its role during excessive lipolysis in cows is largely unknown. Herein, we investigated the potential links between the gut microbiome and postpartum immunosuppression in periparturient dairy cows with excessive lipolysis using single immune cell transcriptome, 16S amplicon sequencing, metagenomics, and targeted metabolomics.Results The use of single-cell RNA sequencing identified 26 clusters that were annotated to 10 different immune cell types. Enrichment of functions of these clusters revealed a downregulation of functions in immune cells isolated from a cow with excessive lipolysis compared to a cow with low/normal lipolysis. The results of metagenomic sequencing and targeted metabolome analysis together revealed that secondary bile acid (SBA) biosynthesis was significantly activated in the cows with excessive lipolysis. Moreover, the relative abundance of gut Bacteroides sp. OF04 - 15BH, Paraprevotella clara, Paraprevotella xylaniphila, and Treponema sp. JC4 was mainly associated with SBA synthesis. The use of an integrated analysis showed that the reduction of plasma glycolithocholic acid and taurolithocholic acid could contribute to the immunosuppression of monocytes (CD14(+)MON) during excessive lipolysis by decreasing the expression of GPBAR1.Conclusions Our results suggest that alterations in the gut microbiota and their functions related to SBA synthesis suppressed the functions of monocytes during excessive lipolysis in transition dairy cows. Therefore, we concluded that altered microbial SBA synthesis during excessive lipolysis could lead to postpartum immunosuppression in transition cows.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available