4.7 Article

Pre-Industrial, Present and Future Atmospheric Soluble Iron Deposition and the Role of Aerosol Acidity and Oxalate Under CMIP6 Emissions

Journal

EARTHS FUTURE
Volume 11, Issue 6, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022EF003353

Keywords

-

Ask authors/readers for more resources

Human activities have increased the deposition of soluble iron, particularly through combustion emissions and increased atmospheric acidity. It is projected that global deposition of soluble iron will increase by 40% by the late 21st century. This has significant implications for marine ecosystems.
Atmospheric iron (Fe) deposition to the open ocean affects net primary productivity, nitrogen fixation, and carbon uptake. We investigate changes in soluble Fe (SFe) deposition from the pre-industrial period to the late 21st century using the EC-Earth3-Iron Earth System model. EC-Earth3-Iron considers various sources of Fe, including dust, fossil fuel combustion, and biomass burning, and features comprehensive atmospheric chemistry, representing atmospheric oxalate, sulfate, and Fe cycles. We show that anthropogenic activity has changed the magnitude and spatial distribution of SFe deposition by increasing combustion Fe emissions and atmospheric acidity and oxalate levels. We report that SFe deposition has doubled since the early industrial era, using the Coupled Model Intercomparison Project Phase 6 emission inventory. We highlight acidity as the main solubilization pathway for dust-Fe and oxalate-promoted processing for the solubilization of combustion-Fe. We project a global SFe deposition increase of 40% by the late 21st century relative to present day under Shared Socioeconomic Pathway (SSP) 3-7.0, which assumes weak climate change mitigation policies. Conversely, SSPs with stronger mitigation pathways (1-2.6 and 2-4.5) result in 35% and 10% global decreases, respectively. Despite these differences, SFe deposition increases over the equatorial Pacific and decreases in the Southern Ocean (SO) for all SSPs. We further observe that deposition over the equatorial Pacific and SO are highly sensitive to future changes in dust emissions from Australia and South America, as well as from North Africa. Future studies should focus on the potential impact of climate- and human-induced changes in dust and wildfires combined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available