4.6 Article

Analysis of the Dynamic Stability of Tailing Dams: An Experimental Study on the Dynamic Characteristics of Tailing Silt

Journal

APPLIED SCIENCES-BASEL
Volume 13, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/app13095250

Keywords

tailing silt; dynamic stability; dynamic triaxial test; dynamic pore water pressure; energy dissipation

Ask authors/readers for more resources

Through a series of dynamic triaxial experiments, the dynamic characteristics of tailing silt under cyclic stress were explored. Increasing the density of the sample significantly improved its liquefaction resistance, and the stress-strain curves of tailing silt were discussed.
With the improvement in tailing mining-grade requirements and in mineral processing technology, tailing materials tend to be fine-grained. Under the action of earthquakes, a tailing dam is prone to liquefaction, which endangers the safety and stability of the dam. To further explore the dynamic properties of tailing silt under cyclic stress, through a series of dynamic triaxial experiments, we investigated the growth of the hysteresis curve, the development of pore pressure, and the energy dissipation law of tailing silt. The experimental findings indicated that increasing the density of the sample significantly improves its liquefaction resistance and the pore pressure development curve can be fitted using the BiDoseResp function. At the same cyclic stress ratio, the sample's anti-liquefaction strength did not rise monotonically with increasing confining pressure but changed variably at values near a specified low confining pressure; when the sample density rose under the same settings, the specific confining pressure reduced. We also further discussed the evolution law of the stress-strain curves of tailing silt. The results further explored the dynamic characteristics of tailing silt, which can provide some reference for the seismic design and reinforcement measures of many fine-grained tailing dams.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available