4.6 Article

Quantitative Modeling of Near-Field Interactions in Terahertz Near-Field Microscopy

Journal

APPLIED SCIENCES-BASEL
Volume 13, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/app13063400

Keywords

terahertz technology; scattering-scanning near-field optical microscopy; finite element model; near-field interactions; edge effect; antenna effect

Ask authors/readers for more resources

In this study, a finite element model (FEM) is proposed to quantify the near-field interactions, and to investigate the edge effect and antenna effect in THz s-SNOM. Our results indicate that the proposed model can give us a better understanding of the near-field interactions and direct the parameter design of the probe for THz s-SNOM.
Terahertz scattering-scanning near-field optical microscopy (THz s-SNOM), combining the best features of terahertz technology and s-SNOM technology, has shown unique advantages in various applications. Consequently, building a model to characterize near-field interactions and investigate practical issues has become a popular topic in THz s-SNOM research. In this study, a finite element model (FEM) is proposed to quantify the near-field interactions, and to investigate the edge effect and antenna effect in THz s-SNOM. Our results indicate that the proposed model can give us a better understanding of the near-field interactions and direct the parameter design of the probe for THz s-SNOM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available