4.8 Article

High-Throughput Design of Magnetocaloric Materials for Energy Applications: MM′X alloys

Journal

ADVANCED SCIENCE
Volume 10, Issue 17, Pages -

Publisher

WILEY
DOI: 10.1002/advs.202206772

Keywords

ab initio calculations; energy materials; high-throughput screening; magnetocaloric effect

Ask authors/readers for more resources

Magnetic refrigeration is an efficient and eco-friendly alternative to traditional vapor-cooling, but its implementation relies on materials with tailored magnetic and structural properties. This study introduces a high-throughput computational workflow for designing magnetocaloric materials, using density functional theory calculations to screen potential candidates in the MM'X compound family (M/M' = metal, X = main group element). Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both austenite and martensite phases. By evaluating and comparing the structural phase transition and magnetic ordering temperatures, nine compounds with structural transitions are identified as potential candidates based on the concept of the Curie temperature window. Additionally, the use of doping to tailor magnetostructural coupling and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.
Magnetic refrigeration offers an energy efficient and environmental friendly alternative to conventional vapor-cooling. However, its adoption depends on materials with tailored magnetic and structural properties. Here a high-throughput computational workflow for the design of magnetocaloric materials is introduced. Density functional theory calculations are used to screen potential candidates in the family of MM'X (M/M' = metal, X = main group element) compounds. Out of 274 stable compositions, 46 magnetic compounds are found to stabilize in both an austenite and martensite phase. Following the concept of Curie temperature window, nine compounds are identified as potential candidates with structural transitions, by evaluating and comparing the structural phase transition and magnetic ordering temperatures. Additionally, the use of doping to tailor magnetostructural coupling for both known and newly predicted MM'X compounds is predicted and isostructural substitution as a general approach to engineer magnetocaloric materials is suggested.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available