4.7 Article

Femtosecond Laser-Induced Nano-Joining of Volatile Tellurium Nanotube Memristor

Journal

NANOMATERIALS
Volume 13, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/nano13050789

Keywords

memristor; tellurium nanotube; laser joining; nano-joining

Ask authors/readers for more resources

This paper reports multileveled resistance states of tellurium (Te) nanotube based on the clean-room free femtosecond laser nano-joining method, providing a new approach for fabricating high-quality and stable memristors.
Nanowire/nanotube memristor devices provide great potential for random-access high-density resistance storage. However, fabricating high-quality and stable memristors is still challenging. This paper reports multileveled resistance states of tellurium (Te) nanotube based on the clean-room free femtosecond laser nano-joining method. The temperature for the entire fabrication process was maintained below 190 degrees C. A femtosecond laser joining technique was used to form nanowire memristor units with enhanced properties. Femtosecond (fs) laser-irradiated silver-tellurium nanotube-silver structures resulted in plasmonic-enhanced optical joining with minimal local thermal effects. This produced a junction between the Te nanotube and the silver film substrate with enhanced electrical contacts. Noticeable changes in memristor behavior were observed after fs laser irradiation. Capacitor-coupled multilevel memristor behavior was observed. Compared to previous metal oxide nanowire-based memristors, the reported Te nanotube memristor system displayed a nearly two-order stronger current response. The research displays that the multileveled resistance state is rewritable with a negative bias.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available