4.7 Article

Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design

Journal

NANOMATERIALS
Volume 13, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/nano13050859

Keywords

magnetic skyrmion; interlayer exchange coupling; synthetic antiferromagnets; micromagnetic simulation

Ask authors/readers for more resources

Researchers propose a method to create and transfer skyrmions using interlayer exchange coupling in hybrid ferromagnet/synthetic antiferromagnet structures. This approach eliminates the deviations in skyrmion transfer and allows for repeated creation of skyrmions in antiferromagnets. It provides a highly efficient approach for skyrmion-based data storage and logic devices.
Skyrmions are promising for the next generation of spintronic devices, which involves the production and transfer of skyrmions. The creation of skyrmions can be realized by a magnetic field, electric field, or electric current while the controllable transfer of skyrmions is hindered by the skyrmion Hall effect. Here, we propose utilizing the interlayer exchange coupling induced by the Ruderman-Kittel-Kasuya-Yoshida interactions to create skyrmions through hybrid ferromagnet/synthetic antiferromagnet structures. An initial skyrmion in ferromagnetic regions could create a mirroring skyrmion with an opposite topological charge in antiferromagnetic regions driven by the current. Furthermore, the created skyrmions could be transferred in synthetic antiferromagnets without deviations away from the main trajectories due to the suppression of the skyrmion Hall effect in comparison to the transfer of the skyrmion in ferromagnets. The interlayer exchange coupling can be tuned, and the mirrored skyrmions can be separated when they reach the desired locations. Using this approach, the antiferromagnetic coupled skyrmions can be repeatedly created in hybrid ferromagnet/synthetic antiferromagnet structures. Our work not only supplies a highly efficient approach to create isolated skyrmions and correct the errors in the process of skyrmion transport, but also paves the way to a vital information writing technique based on the motion of skyrmions for skyrmion-based data storage and logic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available