4.7 Article

A Wide-Range-Response Piezoresistive-Capacitive Dual-Sensing Breathable Sensor with Spherical-Shell Network of MWCNTs for Motion Detection and Language Assistance

Journal

NANOMATERIALS
Volume 13, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/nano13050843

Keywords

porous conducting polymer; strain sensing; dual sensing mode; breathable

Ask authors/readers for more resources

This paper presents a simple and scalable porous piezoresistive/capacitive dual-mode sensor with a porous structure in polydimethylsiloxane (PDMS) and with multi-walled carbon nanotubes (MWCNTs) embedded on its internal surface to form a three-dimensional spherical-shell-structured conductive network. The sensor offers a dual piezoresistive/capacitive strain-sensing capability, a wide pressure response range, a very large linear response region, excellent response stability and durability. It can be used for human motion detection, gesture and sign language recognition, as well as speech recognition by monitoring facial muscle activity.
It is still a challenge for flexible electronic materials to realize integrated strain sensors with a large linear working range, high sensitivity, good response durability, good skin affinity and good air permeability. In this paper, we present a simple and scalable porous piezoresistive/capacitive dual-mode sensor with a porous structure in polydimethylsiloxane (PDMS) and with multi-walled carbon nanotubes (MWCNTs) embedded on its internal surface to form a three-dimensional spherical-shell-structured conductive network. Thanks to the unique spherical-shell conductive network of MWCNTs and the uniform elastic deformation of the cross-linked PDMS porous structure under compression, our sensor offers a dual piezoresistive/capacitive strain-sensing capability, a wide pressure response range (1-520 kPa), a very large linear response region (95%), excellent response stability and durability (98% of initial performance after 1000 compression cycles). Multi-walled carbon nanotubes were coated on the surface of refined sugar particles by continuous agitation. Ultrasonic PDMS solidified with crystals was attached to the multi-walled carbon nanotubes. After the crystals were dissolved, the multi-walled carbon nanotubes were attached to the porous surface of the PDMS, forming a three-dimensional spherical-shell-structure network. The porosity of the porous PDMS was 53.9%. The large linear induction range was mainly related to the good conductive network of the MWCNTs in the porous structure of the crosslinked PDMS and the elasticity of the material, which ensured the uniform deformation of the porous structure under compression. The porous conductive polymer flexible sensor prepared by us can be assembled into a wearable sensor with good human motion detection ability. For example, human movement can be detected by responding to stress in the joints of the fingers, elbows, knees, plantar, etc., during movement. Finally, our sensors can also be used for simple gesture and sign language recognition, as well as speech recognition by monitoring facial muscle activity. This can play a role in improving communication and the transfer of information between people, especially in facilitating the lives of people with disabilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available