4.5 Review

An Overview of Currently Applied Ferrochrome Production Processes and Their Waste Management Practices

Journal

MINERALS
Volume 13, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/min13060809

Keywords

chromite; chromium (Cr); ferrochromium; ferrochrome (FeCr); waste management; waste materials; hexavalent Cr; Cr(VI); off-gas; carbon monoxide (CO); undersized material; oxidized chromite; low-temperature pelletization; carbon mitigation; alternative reductants; hydrogen

Ask authors/readers for more resources

Ferrochrome is the main source of chromium used in modern-day chromium-containing alloys, particularly in the production of stainless steel. The production process of ferrochrome generates various by-products, which are often classified as waste materials. The current waste management practices in the South African ferrochrome industry are limited, and alternative approaches such as low-carbon, low-temperature processes and hydrogen reduction have not been considered.
Ferrochrome (FeCr) is the main source of virgin chromium (Cr) units used in modern-day chromium (Cr) containing alloys. The vast majority of produced Cr is used during the production of stainless steel, which owes its corrosion resistance mainly to the presence of Cr. In turn, stainless steel is mainly produced from Cr-containing scrap metal and FeCr, which is a relatively crude alloy between iron (Fe) and Cr. The production of FeCr is an energy and material-intensive process, and a relatively wide variety of by-products, typically classified as waste materials by the FeCr industry, are created during FeCr production. The type and extent of waste generation are dictated by the smelting route used and the management practices thereof employed by a specific smelter. In some cases, waste management of hazardous and non-hazardous materials may be classified as insufficient. Hazardous materials, such as hexavalent Cr, i.e., Cr(VI), -containing wastes, are only partially mitigated. Additionally, energy-containing wastes, such as carbon monoxide (CO)-rich off-gas, are typically discarded, and energy-invested materials, such as fine oxidative sintered chromite, are either stockpiled or sold as ordinary chromite. In cases where low-value containing wastes are generated, such as rejects from ore beneficiation processes, consistent and efficient processes are either difficult to employ or the return on investment of such processes is not economically viable. More so, the development of less carbon (C)-intensive (e.g., partial replacement of C reductants) and low-temperature pellet curing processes are currently not considered by the South African FeCr smelting industry. The reasoning for this is mainly due to increased operation costs (if improved waste management were to be implemented/higher cost reductants were used) and a lack of research initiatives. These reasons result in the stagnation of technologies. From an environmental point of view, smelting industries are pressured to reduce C emissions. An attractive approach for removing oxygen from the target metal oxides, and the mitigation of gaseous C, is by using hydrogen as a reductant. By doing so, water vapor is the only by-product. It is however expected that stable metal oxides, such as the Cr-oxide present in chromite, will be significantly more resistive to gaseous hydrogen-based reduction when compared to Fe-oxides. In this review, the various processes currently used by the South African FeCr industry are summarized in detail, and the waste materials per process step are identified. The limitations of current waste management regimes and possible alternative routes are discussed where applicable. Various management regimes are identified that could be improved, i.e., by utilizing the energy associated with CO-rich off-gas combustion, employing a low-temperature alternative chromite pelletization process, and considering the potential of hydrogen as a chromite reductant. These identified regimes are discussed in further detail, and alterative processes/approaches to waste management are proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available