4.5 Article

Investigation of Hydrated Dy(III) and MgSO4 Leaching Agent Ion Adsorption on (001) Surface of Montmorillonite: A Study Using Density Functional Theory

Journal

MINERALS
Volume 13, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/min13060831

Keywords

DFT; Dy(III); MgSO4; SO42-; kaolinite crystalline; adsorption

Ask authors/readers for more resources

This study investigates the stable adsorption structures of Dy(III) and its hydrated ions, MgSO4 leaching agent ions, and the corresponding hydrated ions on the surface of kaolinite using first-principles plane-wave pseudopotential method. The results reveal the adsorption mechanism of Dy(III), Mg(II), and SO42- on the silico-oxygen plane and the aluminum-hydroxyl plane of kaolinite. The study also shows that Dy(H2O)(10)(3+) has more stable adsorption on the silico-oxygen plane, and MgSO4 is more effective in leaching out Dy(III) while SO42- tends to interact with rare earth ions in aqueous solution. These findings provide theoretical guidance for efficient rare earth extraction and the development of novel efficient leaching agents.
Kaolinite is one of the principal rare earth element (REE) ion-adsorption clays that hosts a wide range of elements, including Dy(III) as a representative example. Ammonium sulfate is a typical salt used to leach REEs. Due to the carbon dioxide emissions which occur during ammonia production, it is urgently necessary to develop low environmental pollution leaching agents that can replace (NH4)(2)SO4. MgSO4 is regarded as the most promising eco-friendly leaching agent. Herein, the first-principles plane-wave pseudopotential method based on the density functional theory (DFT) was used to investigate the stable adsorption structures of Dy(III) and its hydrated ions, MgSO4 leaching agent ions and the corresponding hydrated ions on the surface of kaolinite, which revealed the adsorption mechanism of Dy(III), Mg(II), and SO42- on the silico-oxygen plane and the aluminum-hydroxyl plane of kaolinite. Based on the research results of the steric hindrance effect of Dy(III) on the silico-oxygen plane and the aluminum-hydroxyl plane of kaolinite, the adsorption of Dy(H2O)(10)(3+) was more stable on the silico-oxygen plane. It was easier to leach out Dy(III) with MgSO4, while SO42- tended to interact with the rare earth ions in an aqueous solution. The results provide theoretical guidance for efficient rare earth extraction and obtaining novel efficient leaching agents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available