4.4 Article

Analysis of Fluorescent-Stained Lipid Droplets with 3D Reconstruction for Hepatic Steatosis Assessment

Journal

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
Volume -, Issue 196, Pages -

Publisher

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/65206

Keywords

-

Ask authors/readers for more resources

This article presents a method using BODIPY 493/503 fluorescence dye to evaluate the lipid content and types in hepatic lipid droplets induced by a high-fat diet. The method allows reliable distinction of different-sized droplets and quantitative analysis.
Lipid droplets (LDs) are specialized organelles that mediate lipid storage and play a very important role in suppressing lipotoxicity and preventing dysfunction caused by free fatty acids (FAs). The liver, given its critical role in the body's fat metabolism, is persistently threatened by the intracellular accumulation of LDs in the form of both microvesicular and macrovesicular hepatic steatosis. The histologic characterization of LDs is typically based on lipid-soluble diazo dyes, such as Oil Red O (ORO) staining, but a number of disadvantages consistently hamper the use of this analysis with liver specimens. More recently, lipophilic fluorophores 493/503 have become popular for visualizing and locating LDs due to their rapid uptake and accumulation into the neutral lipid droplet core. Even though most applications are well-described in cell cultures, there is less evidence demonstrating the reliable use of lipophilic fluorophore probes as an LD imaging tool in tissue samples. Herein, we propose an optimized boron dipyrromethene (BODIPY) 493/503-based protocol for the evaluation of LDs in liver specimens from an animal model of high-fat diet (HFD)-induced hepatic steatosis. This protocol covers liver sample preparation, tissue sectioning, BODIPY 493/503 staining, image acquisition, and data analysis. We demonstrate an increased number, intensity, area ratio, and diameter of hepatic LDs upon HFD feeding. Using orthogonal projections and 3D reconstructions, it was possible to observe the full content of neutral lipids in the LD core, which appeared as nearly spherical droplets. Moreover, with the fluorophore BODIPY 493/503, we were able to distinguish microvesicles (1 pm < d & LE; 3 pm), intermediate vesicles (3 pm < d & LE; 9 pm), and macrovesicles (d > 9 pm), allowing the successful discrimination of microvesicular and macrovesicular steatosis. Overall, this BODIPY 493/503 fluorescence-based protocol is a reliable and simple tool for hepatic LD characterization and may represent a complementary approach to the classical histological protocols.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available