4.6 Article

Splenic contraction and cardiovascular responses are augmented during apnea compared to rebreathing in humans

Journal

FRONTIERS IN PHYSIOLOGY
Volume 14, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2023.1109958

Keywords

apnea; rebreathing; spleen contraction; hemoglobin concentration; diving response; hypoxia; hypercapnia; oxygen saturation

Categories

Ask authors/readers for more resources

Research suggests that respiratory arrest plays an important role in stimulating splenic contraction and increasing hemoglobin concentration during apnea. Compared to rebreathing, the spleen volume decreases and hemoglobin increases during apnea, along with enhanced cardiovascular responses. During apnea, arterial oxygen saturation decreases while muscle and cerebral oxygen saturations remain relatively stable.
The spleen contracts during apnea, releasing stored erythrocytes, thereby increasing systemic hemoglobin concentration (Hb). We compared apnea and rebreathing periods, of equal sub-maximal duration (mean 137 s; SD 30), in eighteen subjects to evaluate whether respiratory arrest or hypoxic and hypercapnic chemoreceptor stimulation is the primary elicitor of splenic contraction and cardiovascular responses during apnea. Spleen volume, Hb, cardiovascular variables, arterial (SaO(2)), cerebral (ScO2), and deltoid muscle oxygen saturations (SmO2) were recorded during the trials and end-tidal partial pressure of oxygen (PETO2) and carbon dioxide (PETCO2) were measured before and after maneuvers. The spleen volume was smaller after apnea, 213 (89) mL, than after rebreathing, 239 (95) mL, corresponding to relative reductions from control by 20.8 (17.8) % and 11.6 (8.0) %, respectively. The Hb increased 2.4 (2.0) % during apnea, while there was no significant change with rebreathing. The cardiovascular responses, including bradycardia, decrease in cardiac output, and increase in total peripheral resistance, were augmented during apnea compared to during rebreathing. The PETO2 was higher, and the PETCO2 was lower, after apnea compared to after rebreathing. The ScO2 was maintained during maneuvers. The SaO(2) decreased 3.8 (3.1) % during apnea, and even more, 5.4 (4.4) %, during rebreathing, while the SmO2 decreased less during rebreathing, 2.2 (2.8) %, than during apnea, 8.3 (6.2) %. We conclude that respiratory arrest per se is an important stimulus for splenic contraction and Hb increase during apnea, as well as an important initiating factor for the apnea-associated cardiovascular responses and their oxygen-conserving effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available