4.6 Article

Psychological stress induces an increase in cholinergic enteric neuromuscular pathways mediated by glucocorticoid receptors

Journal

FRONTIERS IN NEUROSCIENCE
Volume 17, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnins.2023.1100473

Keywords

enteric nervous system; stress; glucocorticoid receptor; acetylcholine; motility

Categories

Ask authors/readers for more resources

Repeated acute stress (RASt) is associated with gastrointestinal dysfunctions. This study found that the cholinergic component in the enteric nervous system (ENS) plays a role in these dysfunctions, possibly through the glucocorticoid receptor (GR) system. The use of a GR-specific antagonist can prevent the effects on colonic acetylcholine levels and motility.
IntroductionRepeated acute stress (RASt) is known to be associated with gastrointestinal dysfunctions. However, the mechanisms underlying these effects have not yet been fully understood. While glucocorticoids are clearly identified as stress hormones, their involvement in RASt-induced gut dysfunctions remains unclear, as does the function of glucocorticoid receptors (GR). The aim of our study was to evaluate the involvement of GR on RASt-induced changes in gut motility, particularly through the enteric nervous system (ENS). MethodsUsing a murine water avoidance stress (WAS) model, we characterized the impact of RASt upon the ENS phenotype and colonic motility. We then evaluated the expression of glucocorticoid receptors in the ENS and their functional impact upon RASt-induced changes in ENS phenotype and motor response. ResultsWe showed that GR were expressed in myenteric neurons in the distal colon under basal conditions, and that RASt enhanced their nuclear translocation. RASt increased the proportion of ChAT-immunoreactive neurons, the tissue concentration of acetylcholine and enhanced cholinergic neuromuscular transmission as compared to controls. Finally, we showed that a GR-specific antagonist (CORT108297) prevented the increase of acetylcholine colonic tissue level and in vivo colonic motility. DiscussionOur study suggests that RASt-induced functional changes in motility are, at least partly, due to a GR-dependent enhanced cholinergic component in the ENS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available