4.1 Article

Toward optimising reproductive output of Eristalis tenax (Diptera: Syrphidae) for commercial mass rearing systems

Journal

AUSTRAL ENTOMOLOGY
Volume -, Issue -, Pages -

Publisher

WILEY
DOI: 10.1111/aen.12660

Keywords

drone fly; eggs; mating; sex ratio; stocking density; temperature

Categories

Ask authors/readers for more resources

Developing mass rearing systems for the drone fly, Eristalis tenax, is crucial for its use as a commercial pollinator. This study focuses on manipulating adult mating and the development of eggs in the fly. The results show that a temperature range of 12 to 30 degrees C is suitable for successful egg development and hatching. The study also found optimal timing for female mating and identified factors affecting reproductive output. Additionally, the study discovered endogenous overwintering behaviors that affect mating rates and egg hatching success.
Developing mass rearing systems for the drone fly, Eristalis tenax, is a crucial step toward its use as a complementary commercial pollinator. To meet the timing of commercial needs for E. tenax, there is significant value to both predicting and managing reproductive output and development within the rearing protocol. To help achieve this, our study focuses on the laboratory manipulation of adult mating and the timing of the development of eggs in E. tenax. To stagger colony cohorts, egg rearing temperatures ranging from 12 to 30 degrees C were found to be suitable for both successful egg development and hatching viability (97 to 28.3 h to first hatch, respectively). The mating window for E. tenax females was established to commence from 2 weeks post eclosion and reached 75 +/- 11% mated at 7 weeks. Reproductive output over 12 weeks was assessed in separate cage manipulation trials: (1) varying the sex ratio with 20:40, 30:30 and 40:20 female and male flies respectively per cage and (2) varying the adult density per cage with 15:15, 30:30, 60:60 and 120:120 female and male flies per cage. Female percentage mated and egg cluster size, which averaged 200.6 +/- 4.3 eggs per cluster, did not change between treatments in the sex ratio and density trials. Egg cluster output per female was significantly reduced for treatments across both trials, which had more than 30 females in a cage. A stocking rate of 15:15 produced 86% more eggs per female than expected, a percentage well above that of all other treatments. However, the highest stocking density produced the most eggs when assessed at a per cage level. Fly survival was significantly different between the sexes across both trials with males dying earlier in cages stocked with more females than males. Although the fly colonies were held at constant temperatures and light conditions for 6 months, we found evidence of endogenous overwintering behaviours among flies resulting in lower mating rates, egg hatching success and greater longevity among flies studied over winter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available