4.5 Article

Effect of the Size of the Superhydrophobic Regions of Biphilic Surfaces on the Bubble Dynamics

Journal

SYMMETRY-BASEL
Volume 15, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/sym15040949

Keywords

heat transfer; nucleate boiling; biphilic surfaces; bubble dynamics

Ask authors/readers for more resources

This study aims to evaluate the effect of the size of circular superhydrophobic regions on the bubble dynamics in pool boiling conditions. The experiment found that smaller superhydrophobic spots resulted in more uniform and stable bubbles with higher evaporation mass transfer rates. It also highlighted the possibility of modulating the bubble development according to the design objectives of biphilic surfaces.
The current work aims to experimentally evaluate the effect of the size of circular superhydrophobic regions of biphilic surfaces on the bubble dynamics under pool boiling conditions. Biphilic surfaces are structured surfaces with tunable wettability, presenting an array of hydrophobic small spots in a hydrophilic surface or vice versa. The factors that affect the bubble dynamics are of geometric nature such as the diameters of the bubbles, their volume, and the height of the centroid, and of more complex nature such as the departure frequency of the bubbles and the rate of evaporation mass transfer. In this study, the bubble dynamics and boiling performance were evaluated by adjusting the diameter of the single circular superhydrophobic regions. A stainless steel AISI 304 foil was used as the base hydrophilic region, and the superhydrophobic regions were made by spray coating the NeverWet (R) superhydrophobic solution over well-defined masks. The main conclusion was that the bubble dynamics are clearly affected by the diameter of the superhydrophobic spots. The smaller spots favored the generation of more uniform and stable bubbles, mainly due to the border surface tension forces' dominance. With the increase in the diameter of the bubbles, the surface tension acting at the border with the much larger hydrophilic region impacts the process less. Thus, the smaller superhydrophobic regions had higher evaporation mass transfer rates. The region with the best pool boiling performance along with improved bubble dynamics was the superhydrophobic region with an 0.8 mm diameter, corresponding to a superhydrophobic area to total area ratio of 0.11%. Moreover, this experimental work confirmed that the bubble dynamics' impacting factors such as the diameter at the various stages of development of the bubbles can be modulated according to the final objectives of the design and fabrication of the biphilic surfaces. The research significance and novelty of this work come from the comprehensive study of the geometrical pattern of the heat transfer surface in pool boiling conditions and its impact on the bubble dynamics and heat transfer capability. We also suggest further studies considering nanoscale superhydrophobic spot arrangements and the future usage of different working fluids such as nanofluids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available