4.5 Article

A Non-Second-Gradient Model for Nonlinear Electroelastic Bodies with Fibre Stiffness

Journal

SYMMETRY-BASEL
Volume 15, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/sym15051065

Keywords

fibre-reinforced electroactive polymers; bending stiffness; spectral invariant; nonpolar; hyperelasticity

Ask authors/readers for more resources

The study of the mechanical behavior of fibre-reinforced electroactive polymers (EAPs) with bending stiffness is important for mechanical design and problem solving in engineering. However, there is a lack of constitutive models for fibre-reinforced EAPs with fibre bending stiffness in the existing literature. Therefore, it is crucial to develop a relevant constitutive equation to enhance the understanding of their mechanical behavior. In this paper, a constitutive equation is proposed for a nonlinear nonpolar EAP reinforced by embedded fibres, considering the elastic resistance of the fibres to bending without using the second gradient theory that assumes the existence of contact torques. This model is simpler and more realistic, particularly for nonpolar EAPs where contact torques do not exist.
The study of the mechanical behaviour of fibre-reinforced electroactive polymers (EAPs) with bending stiffness is beneficial in engineering for mechanical design and problem solving. However, constitutive models of fibre-reinforced EAPs with fibre bending stiffness do not exist in the literature. Hence, to enhance the understanding of the mechanical behaviour of fibre-reinforced EAPs with fibre bending stiffness, the development of a relevant constitutive equation is paramount. In this paper, we develop a constitutive equation for a nonlinear nonpolar EAP, reinforced by embedded fibres, in which the elastic resistance of the fibres to bending is modelled via the classical branches of continuum mechanics without using the second gradient theory, which assumes the existence of contact torques. In view of this, the proposed model is simple and somewhat more realistic, in the sense that contact torques do not exist in nonpolar EAPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available