4.5 Article

Microsatellite marker-based genetic diversity assessment among exotic and native maize inbred lines of Bangladesh

Journal

SAUDI JOURNAL OF BIOLOGICAL SCIENCES
Volume 30, Issue 8, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.sjbs.2023.103715

Keywords

Genetic variability; Inbreds; Polymorphism; SSR markers; Zea mays

Categories

Ask authors/readers for more resources

This study assessed the diversity among 22 maize inbreds using 18 microsatellite markers, and identified 187 alleles. The study found that the genetic diversity among maize inbreds is important for maize hybridization, and certain alleles have higher diversity. The study also identified markers that are most suitable for maize inbreds and can be used as parent materials for future hybrid maize breeding.
Hybrid development is basically dependent on the variability among available genetic resources. Polymorphism among the maize inbreds is essentially needed for maize hybridization. This study aimed at the assessment of diversity among 22 maize inbreds by 18 microsatellite markers. The study identified 187 alleles at 18 SSR loci. The amplified allele frequency per microsatellite locus was 10.4 and the highest allele per locus was 17 in SSR primer pair phi026. SSR primer set p-umc1292, phi074 and phi090 showed the lowest 6 alleles per genotype per locus. The locus phi026 showed the highest degree of gene diversity (0.92), and the locus p-umc1292 had the lowest of gene diversity (0.77) with a mean value of 0.862 among the microsatellites. At each site, the most prevalent allele varied between 0.14 (bnlg371) and 0.36. (p-umc1292). At any given locus, an average of 0.22 out of the 22 selected maize inbred lines had a common major allele. The average value of the polymorphic information content (PIC) was 0.85, within the range of 0.74 at the lowest to 0.92 at the highest. The higher PIC values of phi026 and nc013 established them to be the best markers for maize inbred lines. The UPGMA clustering generated seven distinct groups having 12.5% of similarity coefficient. The results revealed that inbred lines E10, E27, E19, E34, E35, E4, E43, E28, E11, E21, E17, E38, E25, E34, E14, E16, E39 and E3 were more diversified. These lines are promising to be used as parent materials for hybrid maize development in the future. & COPY; 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available