4.7 Article

Dual mode imaging guided multi-functional bio-targeted oxygen production probes for tumor therapy

Journal

JOURNAL OF NANOBIOTECHNOLOGY
Volume 21, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12951-023-01901-7

Keywords

Bacteriotherapy; Tumor hypoxia; Focused ultrasound ablation surgery; Dual mode imaging; Anti-tumor therapy

Ask authors/readers for more resources

This study aims to construct bio-targeted oxygen production probes consisting of Bifidobacterium that naturally target the hypoxia region of the tumor and multi-functional oxygen-producing nanoparticles equipped with IR780, perfluorohexane (PFH), CBP (carboplatin), and oxygen. The probes are expected to achieve targeted and synergistic focused ultrasound ablation surgery (FUAS) therapy and dual-mode imaging to mediate tumor diagnosis and treatment. The strategy can potentially alleviate tumor hypoxia, avoid tumor drug resistance, improve the effect of chemotherapy, and provide the foundation for future tumor therapy progress.
Focused ultrasound ablation surgery (FUAS) is a novel therapy with a wide range of potential applications. However, synergists are crucial to the therapy process due to the ultrasonic energy's attenuation properties. As a result of the complex hypoxic environment in the tumor area and many factors, the existing synergists have limitations such as weak targeting, single imaging mode, and easy tumor recurrence after treatment. Because of the above deficiencies, this study intends to construct bio-targeted oxygen production probes consisting of Bifidobacterium that naturally target the hypoxia region of the tumor and multi-functional oxygen-producing nanoparticles equipped with IR780, perfluorohexane (PFH), CBP (carboplatin), and oxygen. The probes are expected to achieve targeted and synergistic FUAS therapy and dual-mode imaging to mediate tumor diagnosis and treatment. The oxygen and drugs carried in it are accurately released after FUAS stimulation, which is expected to alleviate tumor hypoxia, avoid tumor drug resistance, improve the effect of chemotherapy, and realize FUAS combined with chemotherapy antitumor therapy. This strategy is expected to make up for the deficiencies of existing synergists, improve the effectiveness and safety of treatment, and provide the foundation for future tumor therapy progress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available