4.7 Article

Mesophyll conductance and N allocation co-explained the variation in photosynthesis in two canola genotypes under contrasting nitrogen supply

Journal

FRONTIERS IN PLANT SCIENCE
Volume 14, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2023.1171331

Keywords

canola; genotype; photosynthetic nitrogen use efficiency; mesophyll conductance; N allocation; photosynthetic N; nitrogen

Categories

Ask authors/readers for more resources

The application of nitrogen fertilizer within a normal range can increase the leaf nitrogen content and photosynthetic rate of canola plants. This study analyzed two genotypes of canola with different leaf nitrogen content to determine the impact of nitrogen supply on leaf photosynthesis, mesophyll conductance, and nitrogen partitioning. The results showed that increasing nitrogen supply can enhance CO2 assimilation rate, mesophyll conductance, and photosynthetic nitrogen content in both genotypes.
The application of nitrogen fertilizer within a normal range has been found to increase the leaf nitrogen content and photosynthetic rate of canola plants (Brassica napus L.). Despite numerous studies on the separate effects of CO2 diffusion limitation and nitrogen allocation trade-off on photosynthetic rate, few have examined both these factors in relation to the photosynthetic rate of canola. In this study, two genotypes of canola with varying leaf nitrogen content were analyzed to determine the impact of nitrogen supply on leaf photosynthesis, mesophyll conductance, and nitrogen partitioning. The results showed that the CO2 assimilation rate (A), mesophyll conductance (g(m)), and photosynthetic nitrogen content (N-psn) increased with an increase in nitrogen supply in both genotypes. The relationship between nitrogen content and A followed a linear-plateau regression, while A had linear relationships with both photosynthetic nitrogen content and g(m), indicating that the key to enhancing A is increasing the distribution of leaf nitrogen into the photosynthetic apparatus and g(m), rather than just increasing nitrogen content. Under high nitrogen treatment, the genotype (QZ) with high nitrogen content had 50.7% more nitrogen than the other genotype (ZY21), but had similar A, which was primarily due to ZY21's higher photosynthetic nitrogen distribution ratio and stomatal conductance (g(sw)). On the other hand, QZ showed a higher A than ZY21 under low nitrogen treatment as QZ had higher N-psn and g(m) compared to ZY21. Our results indicate that, in selecting high PNUE rapeseed varieties, it is important to consider the higher photosynthetic nitrogen distribution ratio and CO2 diffusion conductance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available