4.6 Article

Antimicrobial mechanisms and secondary metabolite profiles of Streptomyces hygroscopicus subsp. hygroscopicus 5-4 against banana fusarium wilt disease using metabolomics

Journal

FRONTIERS IN MICROBIOLOGY
Volume 14, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2023.1159534

Keywords

fusarium wilt of banana; Streptomyces hygroscopicus subsp; hygroscopicus; antifungal mechanism; metabolomics; hygromycin B

Categories

Ask authors/readers for more resources

Fusarium wilt of bananas caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is severely impacting the sustainable development of the banana industry. Streptomyces hygroscopicus subsp. hygroscopicus 5-4, a strain with strong antifungal activity, was found to damage the cell membrane of Foc TR4, inhibiting its mycelial growth. Hygromycin B was identified as a potential key antimicrobial metabolite. These findings make Streptomyces hygroscopicus subsp. hygroscopicus 5-4 a promising candidate for controlling Fusarium wilt of bananas and provide a scientific basis for the practical application of hygromycin B as a biological control agent.
Fusarium wilt of bananas (FWB) is seriously affecting the sustainable development of the banana industry and is caused by the devastating soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Biological control is a promising strategy for controlling Fusarium wilt in bananas. We previously identified Streptomyces hygroscopicus subsp. hygroscopicus 5-4 with strong antifungal activity against the FWB. The most possible antimicrobial mechanism of strain 5-4 was explored using the metabolomics approach, light microscopy imaging, and transmission electron microscopy (TEM). The membrane integrity and ultrastructure of Foc TR4 was damaged after extract treatment, which was supported by the degradation of mycelium, soluble protein content, extracellular reducing sugar content, NADH oxidase activity, malondialdehyde content, mitochondrial membrane potential, and mitochondrial respiratory chain complex enzyme activity. The extracts of strain 5-4 cultivated at different times were characterized by a liquid chromatography-mass spectrometer (LC-MS). 647 known metabolites were detected in the extracts of strains 5-4. Hygromycin B, gluten exorphin B4, torvoside G, (z)-8-tetradecenal, piperitoside, sarmentosin, pubescenol, and other compounds were the main differential metabolites on fermentation culture for 7 days. Compared with strain 5-4 extracts, hygromycin B inhibited the mycelial growth of Foc TR4, and the EC50 concentration was 7.4 & mu;g/mL. These results showed that strain 5-4 could destroy the cell membrane of Foc TR4 to inhibit the mycelial growth, and hygromycin B may be the key antimicrobial active metabolite. Streptomyces hygroscopicus subsp. hygroscopicus 5-4 might be a promising candidate strain to control the FWB and provide a scientific basis for the practical application of hygromycin B as a biological control agent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available