4.7 Article

Mechanism of resistance to phagocytosis and pulmonary persistence in mucoid Pseudomonas aeruginosa

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fcimb.2023.1125901

Keywords

exopolysaccharide; biofilm; mucoid; alginate; phagocytic evasion

Ask authors/readers for more resources

Pseudomonas aeruginosa forms biofilms by producing exopolysaccharides and converts to a mucoid phenotype, which promotes resistance to phagocytic killing. This study reveals that alginate on the bacterial surface inhibits receptor-ligand interactions important for phagocytosis, leading to persistent chronic infections.
IntroductionPseudomonas aeruginosa is known for its ability to form biofilms, which are dependent on the production of exopolysaccharides. During chronic colonization of the airway and biofilm formation, P. aeruginosa converts to a mucoid phenotype, indicating production of the exopolysaccharide alginate. The mucoid phenotype promotes resistance to phagocytic killing, but the mechanism has not been established. Methods and ResultsTo better understand the mechanism of phagocytic evasion conferred by alginate production, Human (THP-1) and murine (MH-S) macrophage cell lines were used to determine the effects of alginate production on macrophage binding, signaling and phagocytosis. Phagocytosis assays using mucoid clinical isolate FRD1 and its non-mucoid algD mutant showed that alginate production inhibited opsonic and non-opsonic phagocytosis, but exogenous alginate was not protective. Alginate caused a decrease in binding to murine macrophages. Blocking antibodies to CD11b and CD14 showed that these receptors were important for phagocytosis and were blocked by alginate. Furthermore, alginate production decreased the activation of signaling pathways required for phagocytosis. Mucoid and non-mucoid bacteria induced similar levels of MIP-2 from murine macrophages. DiscussionThis study demonstrated for the first time that alginate on the bacterial surface inhibits receptor-ligand interactions important for phagocytosis. Our data suggest that there is a selection for alginate conversion that blocks the earliest steps in phagocytosis, leading to persistence during chronic pulmonary infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available