4.8 Article

Competition between lysogenic and sensitive bacteria is determined by the fitness costs of the different emerging phage-resistance strategies

Journal

ELIFE
Volume 12, Issue -, Pages -

Publisher

eLIFE SCIENCES PUBL LTD
DOI: 10.7554/eLife.83479

Keywords

K pneumoniae; polylysogen; phage resistance; coevolution; Other

Categories

Ask authors/readers for more resources

Many bacterial genomes carry prophages that can eliminate competitors, and bacteria can develop resistance through various mechanisms, such as surface receptor modification or lysogenization. The adaptation process of phage resistance involves both genetic and non-genetic changes. Our study showed that the frequency of capsulated cells in phage-sensitive populations increased over time, indicating the fine-tuning of capsule production as an adaptation to reduce phage absorption.
Many bacterial genomes carry prophages whose induction can eliminate competitors. In response, bacteria may become resistant by modifying surface receptors, by lysogenization, or by other poorly known processes. All these mechanisms affect bacterial fitness and population dynamics. To understand the evolution of phage resistance, we co-cultivated a phage-sensitive strain (BJ1) and a polylysogenic Klebsiella pneumoniae strain (ST14) under different phage pressures. The population yield remained stable after 30 days. Surprisingly, the initially sensitive strain remained in all populations and its frequency was highest when phage pressure was strongest. Resistance to phages in these populations emerged initially through mutations preventing capsule biosynthesis. Protection through lysogeny was rarely observed because the lysogens have increased death rates due to prophage induction. Unexpectedly, the adaptation process changed at longer time scales: the frequency of capsulated cells in BJ1 populations increased again because the production of the capsule was fine-tuned, reducing the ability of phage to absorb. Contrary to the lysogens, these capsulated-resistant clones are pan-resistant to a large panel of phages. Intriguingly, some clones exhibited transient non-genetic resistance to phages, suggesting an important role of phenotypic resistance in coevolving populations. Our results show that interactions between lysogens and sensitive strains are shaped by antagonistic co-evolution between phages and bacteria. These processes may involve key physiological traits, such as the capsule, and depend on the time frame of the evolutionary process. At short time scales, simple and costly inactivating mutations are adaptive, but in the long term, changes drawing more favorable trade-offs between resistance to phages and cell fitness become prevalent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available