4.6 Article

Mixed Microscopic Eu2+ Occupancies in the Next-Generation Red LED Phosphor Sr[Li2Al2O2N2]:Eu2+ (SALON:Eu2+)

Journal

ADVANCED OPTICAL MATERIALS
Volume 11, Issue 9, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adom.202202732

Keywords

Eu2+; light-emitting diodes; narrow-band red emitter; Sr[Li2Al2O2N2] (SALON); UCr4C4-type phosphors

Ask authors/readers for more resources

Red-emitting narrow-band phosphors are crucial for the next generation of high-efficiency and optimized correlated color temperature white-light phosphor-converted light-emitting diodes. The crystalline structure of SALON:Eu2+ has been studied using X-ray diffraction, low-temperature luminescence spectroscopy, and ligand field theory to understand the local coordination symmetry and ligand ratio. The mutual energy transfer between Eu2+ centers in SALON:Eu2+ has been characterized using time-resolved luminescence.
Red-emitting narrow-band phosphors are of utmost importance for next-generation white-light phosphor-converted light-emitting diodes (pc-wLEDs) for improved efficacy and optimized correlated color temperatures. A promising representative crystallizing in an ordered variant of the UCr4C4 structure type is Sr[Li2Al2O2N2]:Eu2+ (SALON:Eu2+) emitting at a desirable wavelength of 614 nm. Despite an expected eightfold coordination of the Eu2+ ions by four N3- and O2- ions, respectively, the exact local coordination symmetry and a 1:1 ratio between the two types of ligands is not straightforwardly proven by X-ray diffraction. Low-temperature luminescence spectroscopy in conjunction with ligand field theory are powerful alternatives to resolve local features of Eu2+ as its excited 4f(6)5d(1) configuration reacts sensitively to the polarity of the ligands. The dominant emission at 614 nm shows pronounced vibronic fine structure at 10 K. In addition, weak emission bands can be resolved at 570 and 650 nm even at a low doping concentration of 0.5 mol% and are assigned to Eu2+ ions being eightfold coordinated by N3- and O2- ions in a ratio different from 1:1. Due to the feature of vierer ring-type channels in SALON:Eu2+, those Eu2+ centers are sufficiently close for mutual energy transfer, which is characterized by time-resolved luminescence at 10 K.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available