4.6 Article

Contents of Metals in Sediments and Macrophytes Differed between the Locations in an Alpine Lake Revealing Human Impacts-A Case Study of Lake Bohinj (Slovenia)

Journal

WATER
Volume 15, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/w15071254

Keywords

oligotrophic lake; macrophytes; pollution; potentially hazardous elements

Ask authors/readers for more resources

Metals stored in lake sediments can bioaccumulate and pose a risk to the environment and human health. This study examined the distribution of metals in an Alpine lake and determined that certain toxic elements were elevated compared to natural background values, potentially due to past human activities in the area. The research highlights the complex processes governing the distribution of trace metals in Alpine lakes.
Metals stored in sediments of lakes can bioaccumulate through the food chain, posing a risk to the environment and human health. Alpine lakes are supposed to be less affected by pollution than lowland lakes and are vulnerable to any changes and impacts in their catchment areas because of their remote position and ultra-oligotrophic character. Therefore, we used a model Alpine lake, Bohinj (in the Triglav National Park, Julian Alps, Slovenia), to evaluate the load of metals in the abiotic and biotic compartments of the ecosystem, in order to assess the spatial distribution of metals, and finally, to determine whether past and present human activities in the lake's catchment area may be causing pollution. To this aim, the contents of Cu, Pb, Cr, Cd, Co, Mn, Fe, Zn, Hg and Ni in the sediment, water, and macrophyte samples were determined. The results showed that the average content of some toxic elements, especially in the sediments (Cd 0.52 mg/kg; Hg 0.03 mg/kg) and plants (Co 0.71 mg/kg; Cr 5.88 mg/kg) was elevated compared to natural background values. High Hg contents could be connected with natural geological sources, while other elements were probably of anthropogenic origin. High levels of all elements in the eastern part of the lake indicated long-term pollution, which could be a consequence of past iron extraction and military activities in the vicinity. On the other hand, high contents of elements in the water suggests that intensive touristic activities in the area may cause temporal pollution in the summer. The study sheds light on complicated processes governing the distribution of trace metals in Alpine lakes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available