4.6 Article

Research on Rain Pattern Classification Based on Machine Learning: A Case Study in Pi River Basin

Journal

WATER
Volume 15, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/w15081570

Keywords

rain patterns; distribution over time characteristics; dynamic time planning; LightGBM; LSTM; Decision Tree; SVM

Ask authors/readers for more resources

To improve the scientific nature, reliability, and accuracy of flood forecasting, constructing a flood forecasting scheme and considering different rain patterns is effective. Using machine learning methods, this study classified rain patterns and compared the performances of different models. LightGBM achieved the highest accuracy and fastest training speed, while LSTM and SVM showed higher accuracy but lower efficiency, and DT had fast classification speed but lower accuracy. Increasing the sampling size improved classification accuracy and training efficiency.
For the purpose of improving the scientific nature, reliability, and accuracy of flood forecasting, it is an effective and practical way to construct a flood forecasting scheme and carry out real-time forecasting with consideration of different rain patterns. The technique for rain pattern classification is of great significance in the above-mentioned technical roadmap. With the rapid development of artificial intelligence technologies such as machine learning, it is possible and necessary to apply these new methods to assist rain classification applications. In this research, multiple machine learning methods were adopted to study the time-history distribution characteristics and conduct rain pattern classification from observed rainfall time series data. Firstly, the hourly rainfall data between 2003 and 2021 of 37 rain gauge stations in the Pi River Basin were collected to classify rain patterns based on the universally acknowledged dynamic time warping (DTW) algorithm, and the classifications were treated as the benchmark result. After that, four other machine learning methods, including the Decision Tree (DT), Long- and Short-Term Memory (LSTM) neural network, Light Gradient Boosting Machine (LightGBM), and Support Vector Machine (SVM), were specifically selected to establish classification models and the model performances were compared. By adjusting the sampling size, the influence of different sizes on the classification was analyzed. Intercomparison results indicated that LightGBM achieved the highest accuracy and the fastest training speed, the accuracy and F-1 score were 98.95% and 98.58%, respectively, and the loss function and accuracy converged quickly after only 20 iterations. LSTM and SVM have satisfactory accuracy but relatively low training efficiency, and DT has fast classification speed but relatively low accuracy. With the increase in the sampling size, classification results became stable and more accurate. Besides the higher accuracy, the training efficiency of the four methods was also improved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available