4.6 Article

Chromium Removal from Aqueous Solution Using Natural Clinoptilolite

Journal

WATER
Volume 15, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/w15091667

Keywords

adsorption; clinoptilolite; ion exchange; low-cost adsorbent; water pollution; zeolite

Ask authors/readers for more resources

This study investigates the use of natural zeolite clinoptilolite as a low-cost adsorbent for removing chromium from aqueous solutions. The adsorbent is pretreated with NaCl to enhance its removal performance and is regenerated with NaOH to sustain cost-effectiveness. Results show that NaCl-treated clinoptilolite has a higher Cr adsorption capacity and can treat a larger bed volume at a longer breakthrough time compared to as-received clinoptilolite. However, the treated effluents still do not meet the required Cr limit set by the EPA.
This work investigates the applicability of clinoptilolite, a natural zeolite, as a low-cost adsorbent for removing chromium from aqueous solutions using fixed bed studies. To improve its removal performance for the inorganic pollutant, the adsorbent is pretreated with NaCl to prepare it in the homoionic form of Na+ before undertaking ion exchange with Cr3+ in aqueous solution. This work also evaluates if treated effluents could meet the required effluent discharge standard set by legislation for the target pollutant. To sustain its cost-effectiveness for wastewater treatment, the spent adsorbent is regenerated with NaOH. It was found that the clinoptilolite treated with NaCl has a two-times higher Cr adsorption capacity (4.5 mg/g) than the as-received clinoptilolite (2.2 mg/g). Pretreatment of the clinoptilolite with NaCl enabled it to treat more bed volume (BV) (64 BV) at a breakthrough point of 0.5 mg/L of Cr concentration and achieve a longer breakthrough time (1500 min) for the first run, as compared to as-received clinoptilolite (32 BV; 250 min). This suggests that pretreatment of clinoptilolite with NaCl rendered it in the homoionic form of Na+. Although pretreated clinoptilolite could treat the Cr wastewater at an initial concentration of 10 mg/L, its treated effluents were still unable to meet the required Cr limit of less than 0.05 mg/L set by the US Environmental Protection Agency (EPA).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available