4.6 Article

Estimating Land Subsidence and Gravimetric Anomaly Induced by Aquifer Overexploitation in the Chandigarh Tri-City Region, India by Coupling Remote Sensing with a Deep Learning Neural Network Model

Journal

WATER
Volume 15, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/w15061206

Keywords

PSInSAR; DLMLP; indirect downscaling; groundwater storage change

Ask authors/readers for more resources

This study utilizes satellite data from PSInSAR and GRACE to understand land subsidence in the Chandigarh tri-city region. With a coarse spatial resolution of 1o by 1o, challenges arise in correlating GRACE data with PSInSAR displacement. Therefore, a DLMLP model is used along with multiple data sources to estimate groundwater storage change at the urban level. The DLMLP model achieves an R-2-statistics value of 0.91 and 0.89 in the training and testing phases, respectively, with a mean absolute error of 1.23 and root mean square error of 0.87.
This study utilizes surface displacement data from Persistent Scatterer SAR Interferometry (PSInSAR) of Sentinel-1 satellite and groundwater storage change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission to understand land subsidence in the Chandigarh tri-city region. The satellite datasets are used along with the groundwater level data obtained from wells over the study area. Since the GRACE data are available at a much coarser spatial resolution of 1o by 1o, challenges remain in correlating the dataset with PSInSAR displacement that has been multi-looked at 14 m by 14 m resolution. Therefore, multiple sources of data (i.e., the monthly average of GRACE data, groundwater storage change and monthly average PSInSAR displacement per pixel, and interpolated groundwater level data from wells for 2017 to 2022) have been deployed into a deep learning multi-layer perceptron (DLMLP) model to estimate the groundwater storage change at the urban level. This has an indirect downscaling method that is carried out successfully using the DLMLP model for the estimation of groundwater storage changes at the urban level, which is usually complicated by applying direct downscaling methods on the GRACE data. Thus, the DLMLP model developed here is a distinctive approach considered for estimating the changes in groundwater storage using PSInSAR displacement, groundwater data from wells, and GRACE data. The DLMLP model gives an R-2-statistics value of 0.91 and 0.89 in the training and testing phases, respectively, and has a mean absolute error (MAE) of 1.23 and root mean square error (RMSE) of 0.87.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available