4.7 Article

Development of Thermally Stable Nanobodies for Detection and Neutralization of Staphylococcal Enterotoxin B

Journal

TOXINS
Volume 15, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/toxins15060400

Keywords

camelid single-domain antibody; bivalent nanobody; enzyme-linked immunosorbent assay; limit of detection; milk; staphylococcal enterotoxin; thermal stability

Ask authors/readers for more resources

In this study, sixteen unique nanobodies were developed as specific and sensitive tools for detecting and neutralizing staphylococcal enterotoxin B (SEB). The nanobodies showed high specificity for SEB and could detect it with a lower limit of detection (LOD) of 50 pg/mL in PBS and 190 pg/mL in SEB-spiked milk. The thermal stability and long shelf-life of the nanobodies make them suitable for various applications, including the detection and management of SEB contamination in food products.
In this study, sixteen unique staphylococcal enterotoxin B (SEB)-reactive nanobodies (nbs), including ten monovalent and six bivalent nbs, were developed. All characterized nbs were highly specific for SEB and did not cross-react with other staphylococcal enterotoxins (SE). Several formats of highly sensitive enzyme-linked immunosorbent assays (ELISAs) were established using SEB nbs and a polyclonal antibody (pAb). The lowest limit of detection (LOD) reached 50 pg/mL in PBS. When applied to an ELISA to detect SEB-spiked milk (a commonly contaminated foodstuff), a LOD as low as 190 pg/mL was obtained. The sensitivity of ELISA was found to increase concurrently with the valency of nbs used in the assay. In addition, a wide range of thermal tolerance was observed among the sixteen nbs, with a subset of nbs, SEB-5, SEB-9, and SEB-6(2), retaining activity even after exposure to 95 & DEG;C for 10 min, whereas the conventional monoclonal and polyclonal antibodies exhibited heat-labile properties. Several nbs demonstrated a long shelf-life, with one nb (SEB-9) retaining 93% of its activity after two weeks of storage at room temperature. In addition to their usage in toxin detection, eleven out of fifteen nbs were capable of neutralizing SEB's super-antigenic activity, demonstrated by their inhibition on IL-2 expression in an ex vivo human PBMC assay. Compared to monoclonal and polyclonal antibodies, the nbs are relatively small, thermally stable, and easy to produce, making them useful in applications for sensitive, specific, and cost-effective detection and management of SEB contamination in food products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available