4.7 Article

Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling

Journal

REMOTE SENSING
Volume 15, Issue 8, Pages -

Publisher

MDPI
DOI: 10.3390/rs15082159

Keywords

landslide; H; V; GPR; slope stability analysis; N-SPT; SEEP; W; SLOPE

Ask authors/readers for more resources

A reliable stability analysis for a landslide slope requires understanding of the internal geometries and accurate characterisation of geotechnical parameters. Geotechnical models are commonly based on geomorphological data and direct geotechnical investigations. However, empirical correlations between seismic and geotechnical parameters enable investigation in areas difficult to reach with direct instrumentation. Geophysical tests can estimate N-SPT value and derive friction angle from seismic noise measurements, providing useful information when direct data are unavailable or other tests are unreliable.
Performing a reliable stability analysis of a landslide slope requires a good understanding of the internal geometries and an accurate characterisation of the geotechnical parameters of the identified strata. Geotechnical models are commonly based on geomorphological data combined with direct and intrusive geotechnical investigations. However, the existence of numerous empirical correlations between seismic parameters (e.g., S-wave velocity) and geotechnical parameters in the literature has made it possible to investigate areas that are difficult to reach with direct instrumentation. These correlations are often overlooked even though they enable a reduction in investigation costs and time. By means of geophysical tests, it is in fact possible to estimate the N-SPT value and derive the friction angle from results obtained from environmental seismic noise measurements. Despite the empirical character and a certain level of uncertainty derived from the estimation of geotechnical parameters, these are particularly useful in the preliminary stages of an emergency, when straight data are not available and on all those soils where other direct in situ tests are not reliable. These correlations were successfully applied to the Theilly landslide (Western Alps, Italy), where the geotechnical model was obtained by integrating the results of a multi-parameter geophysical survey (H/V seismic noise and ground-penetrating radar) with stratigraphic and geomorphological observations, digital terrain model and field survey data. The analysis of the triggering conditions of the landslide was conducted by means of hydrological-geotechnical modelling, evaluating the behaviour of the slope under different rainfall scenarios and considering (or not) the stabilisation interventions present on the slope. The results of the filtration analyses for all events showed a top-down saturation mechanism, which led to the formation of a saturated face with a maximum thickness of 5 m. Stability analyses conducted for the same events showed the development of a shallow landslide in the first few metres of saturated soil. The modelling results are compatible with the actual evolution of the phenomenon and allow us to understand the triggering mechanism, providing models to support future interventions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available