4.7 Article

Early Yield Forecasting of Maize by Combining Remote Sensing Images and Field Data with Logistic Models

Journal

REMOTE SENSING
Volume 15, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/rs15041025

Keywords

yield forecasting; remote sensing; logistic model; normalization method; crop canopy temperature; maize

Ask authors/readers for more resources

Incorporating remote-sensing-derived land surface temperature (LST) and in-season data into logistic models, accurate forecasting of maize yield can be achieved. Experimental results in Changchun, Jilin Province and Jiefangzha sub-irrigation district, Inner Mongolia, China validate the effectiveness of this approach.
Early forecasting of crop yield from field to region is important for stabilizing markets and safeguarding food security. Producing a precise forecasting result with fewer inputs is an ongoing goal for the large-area yield evaluation. We present one approach of yield prediction for maize that was explored by incorporating remote-sensing-derived land surface temperature (LST) and field in-season data into a series of logistic models with only a few parameters. Continuous observation data of maize were utilized to calibrate and validate the corresponding logistic models for regional biomass estimating based on field temperatures (including crop canopy temperature (Tc)) and relative dry/fresh biomass accumulation. The LST maps from MOD11A1 products, which are considered to be matched as Tc in large irrigation districts, were assimilated into the validated models to estimate the biomass accumulation. It was found that the temporal-scale difference between the instantaneous LST and the daily average value of field-measured Tc was eliminated by data normalization method, indicating that the normalized LST could be input directly into the model as an approximation of the normalized Tc. Making one observed biomass in-season as the driving force, the maximum of dry/fresh biomass accumulation (DBA/FBA) at harvest could be estimated. Then, grain yield forecasting could be achieved according to the local harvest index of maize. Silage and grain yields were evaluated reasonably well compared with field observations based on the regional map of LST values obtained in 2017 in Changchun, Jilin Province, China. Here, satisfactory grain and silage yield forecasting was provided by assimilating once measured value of DBA/FBA at the middle growth period (early August) into the model in advance of harvest. Meanwhile, good results were obtained in the application of this approach using field data in 2016 to predict grain yield ahead of harvest in the Jiefangzha sub-irrigation district, Inner Mongolia, China. This study demonstrated that maize yield can be forecasted accurately prior to harvest by assimilating remote-sensing-derived LST and field data into the logistic models at a regional scale considering the spatio-temporal scale extension of ground information and crop dynamic growth in real time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available