4.7 Article

Eco-Friendly Tannin-Based Non-Isocyanate Polyurethane Resins for the Modification of Ramie (Boehmeria nivea L.) Fibers

Journal

POLYMERS
Volume 15, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/polym15061492

Keywords

Acacia mangium bark; cohesion strength; dimethyl carbonate; hexamethylenediamine; non-isocyanate; ramie fiber; tannin-based polyurethane

Ask authors/readers for more resources

This study developed tannin-based non-isocyanate polyurethane (tannin-Bio-NIPU) and tannin-based polyurethane (tannin-Bio-PU) resins for the impregnation of ramie fibers and investigated their mechanical and thermal properties. The impregnation process improved the thermal stability and mechanical strength of the ramie fibers.
This study aimed to develop tannin-based non-isocyanate polyurethane (tannin-Bio-NIPU) and tannin-based polyurethane (tannin-Bio-PU) resins for the impregnation of ramie fibers (Boehmeria nivea L.) and investigate their mechanical and thermal properties. The reaction between the tannin extract, dimethyl carbonate, and hexamethylene diamine produced the tannin-Bio-NIPU resin, while the tannin-Bio-PU was made with polymeric diphenylmethane diisocyanate (pMDI). Two types of ramie fiber were used: natural ramie without pre-treatment (RN) and with pre-treatment (RH). They were impregnated in a vacuum chamber with tannin-based Bio-PU resins for 60 min at 25 degrees C under 50 kPa. The yield of the tannin extract produced was 26.43 +/- 1.36%. Fourier-transform infrared (FTIR) spectroscopy showed that both resin types produced urethane (-NCO) groups. The viscosity and cohesion strength of tannin-Bio-NIPU (20.35 mPa center dot s and 5.08 Pa) were lower than those of tannin-Bio-PU (42.70 mPa center dot s and 10.67 Pa). The RN fiber type (18.9% residue) was more thermally stable than RH (7.3% residue). The impregnation process with both resins could improve the ramie fibers' thermal stability and mechanical strength. The highest thermal stability was found in RN impregnated with the tannin-Bio-PU resin (30.5% residue). The highest tensile strength was determined in the tannin-Bio-NIPU RN of 451.3 MPa. The tannin-Bio-PU resin gave the highest MOE for both fiber types (RN of 13.5 GPa and RH of 11.7 GPa) compared to the tannin-Bio-NIPU resin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available