4.7 Article

Epoxidized Soybean-Oils-Based Pressure-Sensitive Adhesives with Di-Hydroxylated Soybean-Oils Copolymerizing and Antioxidant Grafting

Journal

POLYMERS
Volume 15, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/polym15122709

Keywords

pressure-sensitive adhesives; epoxidized soybean oils; di-hydroxylated soybean oils; antioxidant grafting; binding strengths; aging-resistant properties

Ask authors/readers for more resources

This study investigated the grafting of antioxidants into vegetable-oils-based pressure-sensitive adhesives (PSAs) to improve the binding strengths and aging-resistant properties. The results showed that propyl gallate (PG) was the most suitable antioxidant, and the PSA grafted with PG exhibited higher peel adhesion and aging resistance under optimal conditions.
Vegetable-oils-based pressure-sensitive adhesives (PSAs) are being developed as a substitute for petrochemical-based PSAs for application in daily life. However, vegetable-oils-based PSAs face the problems of unsatisfactory binding strengths and easy aging. In this work, the grafting of antioxidants (tea polyphenol palmitates, caffeic acid, ferulic acid, gallic acid, butylated hydroxytoluene, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate (PG), tea polyphenols) was introduced into an epoxidized soybean oils (ESO)/di-hydroxylated soybean oils (DSO)-based PSA system to improve the binding strengths and aging-resistant properties. PG was screened out as the most suitable antioxidant in the ESO/DSO-based PSA system. Under optimal conditions (ESO/DSO mass ratio of 9/3, 0.8% PG, 55% rosin ester (RE), 8% phosphoric acid (PA), 50 & DEG;C, and 5 min), the peel adhesion, tack, and shear adhesion of the PG-grafted ESO/DSO-based PSA increased to 1.718 N/cm, 4.62 N, and >99 h, respectively, in comparison with the control (0.879 N/cm, 3.59 N, and 13.88 h), while peel adhesion residue reduced to 12.16% in comparison with the control (484.07%). The thermal stability of the ESO/DSO-based PSA was enhanced after PG grafting. PG, RE, PA, and DSO were partially crosslinked in the PSA system, with the rest being free in the network structures. Thus, antioxidant grafting is a feasible method for improving the binding strengths and aging-resistant properties of vegetable-oils-based PSAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available