4.6 Article

Overlapping functions of SIX homeoproteins during embryonic myogenesis

Journal

PLOS GENETICS
Volume 19, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1010781

Keywords

-

Ask authors/readers for more resources

We demonstrate that specific combinations of Six genes are required for proper myogenesis at different levels of the mouse embryonic body axis. We show that Six1 and Six2 control craniofacial myogenesis by regulating the engagement of cranial mesodermal cells in the myogenic pathway. Furthermore, Six1 and Six4 are necessary for the commitment of somitic dermomyotomal cells to the skeletal muscle lineage. Additionally, the expression of the four Six genes in the myogenic lineage is essential for the self-renewal of PAX7+ stem cells and interacts with enhancer elements at the Pax7 locus to regulate its expression.
Author summaryWe demonstrate with double, triple and quadruple Six KO mouse embryos that specific Six combinations are required for proper myogenesis depending on the level of the mouse embryonic body axis. We show that the Six1 and Six2 genes are required for craniofacial myogenesis by controlling the engagement of unsegmented cranial paraxial mesodermal cells in the myogenic pathway. We also show that hypaxial somitic dermomyotomal cells from embryos mutant for the Six1 and Six4 genes are unable to engage in the skeletal muscle lineage. Last, we show that embryos mutant for the four Six genes expressed in the myogenic lineage exhibit a defect in self-renewal of PAX7+ stem cells present in their residual muscle masses, and that SIX proteins interact directly with several enhancer elements at the Pax7 locus to control its expression. We have thus characterized new functions of SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades that govern the genesis of myogenic stem cells. Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available