4.7 Article

Quantum Dynamics of Attractive and Repulsive Polarons in a Doped MoSe2 Monolayer

Journal

PHYSICAL REVIEW X
Volume 13, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.13.011029

Keywords

-

Ask authors/readers for more resources

When mobile impurities are introduced and coupled to a Fermi sea, new quasiparticles called Fermi polarons are formed. There are two regimes of the Fermi polaron problem: attractive polarons (AP) connected to pairing phenomena, and repulsive polarons (RP) responsible for ferromagnetism. In this study, we investigate Fermi polarons in a doped MoSe2 monolayer and find agreement with polaron theory for attractive polarons. The dynamics of Fermi polarons are important for understanding pairing and magnetic instabilities in various physical systems.
When mobile impurities are introduced and coupled to a Fermi sea, new quasiparticles known as Fermi polarons are formed. There are two interesting, yet drastically different regimes of the Fermi polaron problem: (i) the attractive polaron (AP) branch connected to pairing phenomena spanning the crossover from BCS superfluidity to the Bose-Einstein condensation of molecules and (ii) the repulsive branch (RP), which underlies the physics responsible for Stoner's itinerant ferromagnetism. Here, we study Fermi polarons in two-dimensional systems, where many questions and debates regarding their nature persist. The model system we investigate is a doped MoSe2 monolayer. We find the observed AP-RP energy splitting and the quantum dynamics of attractive polarons agree with the predictions of polaron theory. As the doping density increases, the quantum dephasing of the attractive polarons remains constant, indicative of stable quasiparticles, while the repulsive polaron dephasing rate increases nearly quadratically. The dynamics of Fermi polarons are of critical importance for understanding the pairing and magnetic instabilities that lead to the formation of rich quantum phases found in a wide range of physical systems including nuclei, cold atomic gases, and solids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available