4.7 Article

Modelling Climatically Suitable Areas for Mahogany (Swietenia macrophylla King) and Their Shifts across Neotropics: The Role of Protected Areas

Journal

FORESTS
Volume 14, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/f14020385

Keywords

mahogany; Swietenia macrophylla; neotropic; protected areas; forest monitoring

Categories

Ask authors/readers for more resources

This study predicts the potential distribution of Mahogany and its changes under future climate conditions for the first time. The results are useful for identifying unrecorded populations and planning conservation management. The proposed methodology can be used for other forest species in tropical zones to consider the effects of climate change.
Mahogany (Swietenia macrophylla King) is a species with great economic interest worldwide and is classified as vulnerable to extinction by the IUCN. Deforestation and climate change are the main hazards to this species. Therefore, it is vital to describe possible changes in distribution patterns under current and future climatic conditions, as they are important for their monitoring, conservation, and use. In the current study, we predict, for the very first time, the potential distribution of Mahogany based on data that reflect the total distribution of the species, climatic and edaphic variables, and a consensus model that combines the results of three statistical techniques. The obtained model was projected to future climatic conditions considering two general circulation models (GCM), under two shared socioeconomic pathways (SSP245 and SSP585) for 2070. Predictions under current climatic conditions indicated wide adequate areas in Central American countries such as Mexico and demonstrated a coverage of up to 28.5% within the limits of the protected areas. Under future scenarios, drastic reductions were observed in different regions, particularly in Venezuela, Peru, and Ecuador, with losses of up to 56.0%. On the other hand, an increase in suitable areas for the species within protected areas was also detected. The results of this study are certainly useful for identifying currently unrecorded populations of Mahogany, as well as for identifying locations that are likely to be suitable both now and in the future for conservation management planning. The methodology proposed in this work is able to be used for other forest species in tropical zones as a tool for conducting dynamic conservation and restoration strategies that consider the effects of climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available