4.7 Article

Effect of Paraffin Impregnation Modification on Bamboo Properties and Microstructure

Journal

FORESTS
Volume 14, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/f14061158

Keywords

moso bamboo; impregnation modification; ultra-high-pressure; paraffin impregnation

Categories

Ask authors/readers for more resources

The study aimed to increase the amount of paraffin and its latent heat inside bamboo through ultra-high-pressure impregnation. The treated bamboo showed decreased cellulose crystallinity and the ability to regulate room temperature. The treatment also improved the resistance to biological attacks and enhanced the impregnation efficiency of paraffin.
Phase-change energy-storage paraffin regulates the thermal management of buildings, and the material can regulate room temperature as it absorbs and discharges heat. As a porous adsorbent material, bamboo has high permeability. The aim of this study was to increase the amount of paraffin inside bamboo and the latent heat of the phase change. It was performed using vacuum pressurization (VP) and ultra-high-pressure (UHP) impregnation treatments. The effect of UHP impregnation and properties of bamboo were studied. The weight gain, paraffin loss and dimensional changes were measured and compared. The morphology of UHP-impregnated bamboo were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The main conclusions are as follows: After UHP impregnation, the highest weight gain was 42%. The loss of paraffin was low, and a high weight percentage gain was maintained. The crystallinity of cellulose decreased to 24% at 100 MPa. The latent heat of the bamboo slices was up to 25.66 J/g at 50 MPa, and the phase change temperature was close to room temperature. At 150 MPa, the hydroxyl content was reduced, and the hydrophilicity decreased. In addition, the content of substances such as hemicellulose in the amorphous zone was reduced under UHP, no new characteristic peaks appeared, and no chemical modifications occurred. The vascular bundles were compressed and dense, and the pores and cell gaps decreased. The thin-walled cells were deformed, and the original cell structure was completely destroyed. The surface of the cells was wrapped or covered with paraffin, confirming that the paraffin could impregnate the bamboo cells under UHP. Therefore, bamboo impregnated with paraffin can regulate temperature and save energy in buildings. It is resistant to biological attacks, and UHP improves the impregnation efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available