4.5 Article

Impact of traffic on air pollution in a mid-sized urban city during COVID-19 lockdowns

Journal

AIR QUALITY ATMOSPHERE AND HEALTH
Volume 16, Issue 6, Pages 1141-1152

Publisher

SPRINGER
DOI: 10.1007/s11869-023-01330-3

Keywords

COVID-19; Air pollutants; Traffic; Emissions

Ask authors/readers for more resources

This study evaluated the changes in air pollutant concentrations during and after lockdown in Milwaukee, WI, due to the COVID-19 pandemic. The study found that after the lockdown, there were increases in traffic volume, ammonia, particulate matter, and ozone + nitrogen dioxide concentrations. The results demonstrated that the COVID-19 lockdown measures resulted in decreased traffic and directly impacted air pollutant concentrations.
In this study, we evaluated the changes in air pollutant concentrations around Milwaukee, WI, during and after lockdown due to the COVID-19 pandemic for a period of 126 days. Measurements of particulate matter (PM1, PM2.5, and PM10), NH3, H2S, and O-3 + NO2, were made on a 74-km route of arterial and highway roads from April to August 2020 using a Sniffer 4D sensor mounted to a vehicle. Traffic volume during measurement periods were estimated from smartphone-based traffic data. From lockdown (March 24, 2020-June 11, 2020) to post-lockdown (June 12, 2020-August 26, 2020) median traffic volume increased roughly 30-84%, depending upon the road type. In addition, increases in mean concentrations of NH3 (277%), PM (220-307%), and O-3 + NO2 (28%) were also observed. For both traffic and air pollutants, abrupt changes in the data were observed mid-June, shortly after lockdown measures were lifted in Milwaukee County. Indeed, traffic was able to explain up to 57% of PM, 47% of NH3, and 42% of O-3 + NO2 variance in pollutant concentrations on arterial and highway road segments. Two arterial roads that did not have statistically significant changes in traffic patterns during the lockdown exhibited no statistically significant trends between traffic and air quality parameters. This study demonstrated that COVID-19 lockdowns in Milwaukee, WI, caused significant decreases in traffic, which in turn had a direct impact on air pollutants. It also highlights the need for traffic volume and air quality data at relevant spatial and temporal scales for accurately assessing source apportionment of combustion-based air pollutants, which cannot be captured with typical ground-based sensor systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available