4.7 Article

Multi-Catcher Polymers Regulate the Nucleolin Cluster on the Cell Surface for Cancer Therapy

Journal

ADVANCED HEALTHCARE MATERIALS
Volume 12, Issue 21, Pages -

Publisher

WILEY
DOI: 10.1002/adhm.202300102

Keywords

cancer therapy; ligand-receptor regulation; membrane anchoring; multi-catcher polymers

Ask authors/readers for more resources

Cell signal transduction mediated by cell surface ligand-receptor is crucial for regulating cell behavior. However, the construction of a stable model of cytomembrane receptor aggregation and the development of a universal anti-tumor therapy model on the cellular surface remain challenging.
Cell signal transduction mediated by cell surface ligand-receptor is crucial for regulating cell behavior. The oligomerization or hetero-aggregation of the membrane receptor driven by the ligand realizes the rearrangement of apoptotic signals, providing a new ideal tool for tumor therapy. However, the construction of a stable model of cytomembrane receptor aggregation and the development of a universal anti-tumor therapy model on the cellular surface remain challenging. This work describes the construction of a multi-catcher flexible structure GC-chol-apt-cDNA with a suitable integration of the oligonucleotide aptamer (apt) and cholesterol (chol) on a polymer skeleton glycol chitosan (GC), for the regulation of the nucleolin cluster through strong polyvalent binding and hydrophobic membrane anchoring on the cell surface. This oligonucleotide aptamer shows nearly 100-fold higher affinity than that of the monovalent aptamer and achieves stable anchoring to the plasma membrane for up to 6 h. Moreover, it exerts a high tumor inhibition both in vitro and in vivo by activating endogenous mitochondrial apoptosis pathway through the cluster of nucleolins on the cell membrane. This multi-catcher nano-platform combines the spatial location regulation of cytomembrane receptors with the intracellular apoptotic signaling cascade and represents a promising strategy for antitumor therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available