4.7 Article

Synchronized oscillations of carbon nanotubes dispersed in solution

Journal

SCIENTIFIC REPORTS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-31813-3

Keywords

-

Ask authors/readers for more resources

It has been found that carbon nanotubes can spontaneously exhibit synchronized oscillations in an aqueous mixture of surfactant and dye, suggesting a highly cooperative form of the sparse network with variable linkages.
Although synchronized oscillations are found in a variety of systems and living organisms in nature, there has been no report on technologically important materials. We have observed by a fluorescence microscope that a large number of carbon nanotubes (CNTs) dispersed in an aqueous mixture of the surfactant and dye execute synchronized oscillations spontaneously. The movement was quantified to give a power spectrum, revealing a single, sharp synchronization peak at 20 Hz. It was found not to be affected nor created by external vibrations. The surfactant concentration dependence demonstrates that the Kuramoto model is applicable to describe the CNT synchronization. It is always associated with the power-law noise, indicating the presence of complex heterogeneous networks. These results suggest a highly cooperative form of the sparse CNT network connected with variable linkages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available