4.7 Article

Deep sequencing of microRNAs reveals circadian-dependent microRNA expression in the eyestalks of the Chinese mitten crab Eriocheir sinensis

Journal

SCIENTIFIC REPORTS
Volume 13, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-32277-1

Keywords

-

Ask authors/readers for more resources

This study investigated the mechanisms of miRNA regulation of circadian rhythms in the Chinese mitten crab. The results showed that 23 known miRNAs were differentially expressed depending on the time of day, and the putative target genes for these miRNAs were significantly enriched in the immune response and endocrine-related pathways. These findings suggest that miRNAs play a role in regulating specific physiological functions in the Chinese mitten crab under circadian cycles.
MicroRNAs (miRNAs) are small endogenous non-coding RNAs. In crustaceans, miRNAs might be involved in the regulation of circadian rhythms. Many physiological functions of crustaceans including immunity and hormone secretion exhibit circadian rhythms, but it remains unclear whether specific miRNAs contribute to the alteration of crustacean physiological processes under circadian rhythms. This study investigated the mechanisms of miRNA regulation of circadian rhythms in the Chinese mitten crab (Eriocheir sinensis), one of China's most important aquaculture species. We obtained eyestalks from crab specimens at four time points (6:00; 12:00; 18:00; 24:00) during a 24-h period. We identified 725 mature miRNAs, with 23 known miRNAs differentially expressed depending on the time of day. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the putative target genes for differentially expressed miRNAs were significantly enriched in the immune response and endocrine-related pathways. Numerous putative target genes are involved in the circadian-related pathways and enriched on circadian-control genes. These results suggest that the expression of miRNAs regulates some specific physiological functions in E. sinensis under circadian cycles. We also profiled various putative target genes enriched under the circadian-related pathway. This study performed miRNA expression in the eyestalks of E. sinensis during a 24-h daily cycle, providing insights into the molecular mechanism underlying crustacean circadian rhythms and suggesting miRNAs' role in studying crustacean physiology should not be overlooked.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available