4.7 Article

Activation of AMPK Entails the Protective Effect of Royal Jelly against High-Fat-Diet-Induced Hyperglycemia, Hyperlipidemia, and Non-Alcoholic Fatty Liver Disease in Rats

Journal

NUTRIENTS
Volume 15, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/nu15061471

Keywords

royal jelly; NAFLD; AMPK; hyperglycemia; hyperlipidemia

Ask authors/readers for more resources

This study revealed that royal jelly (RJ) protects against high-fat-diet (HFD)-mediated non-alcoholic liver disease (NAFLD) in rats. RJ treatment reduced weight gain, increased fat pads, and improved metabolic abnormalities in the HFD-fed rats. It also modulated the levels of liver enzymes, inflammatory cytokines, and adipokines, as well as the expression of genes involved in lipid metabolism.
This study examined the mechanism underlying the protective effect of royal jelly (RJ) against high-fat-diet (HFD)-mediated non-alcoholic liver disease (NAFLD) in rats. Adult male rats were divided into five groups (n = 8 each): control fed a standard diet, control + RJ (300 mg/kg), HFD, HFD + RJ (300 mg/kg), and HFD + RJ + CC (0.2 mg/kg). The treatment with RJ reduced weight gain, increased fat pads, and attenuated fasting hyperglycemia, hyperinsulinemia, and glucose tolerance in the HFD-fed rats. It also reduced the serum levels of liver function enzymes, interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and leptin but significantly increased the serum levels of adiponectin. In addition, and with no effect on lipid excretion in stool, RJ significantly decreased the hepatic mRNA expression of SREBP1, serum, hepatic cholesterol, and triglycerides but increased hepatic mRNA levels of PPAR alpha. Furthermore, RJ reduced the hepatic levels of TNF-alpha, IL-6, and malondialdehyde (MDA) in the livers of these rats. Of note, with no effect on the mRNA levels of AMPK, RJ stimulated the phosphorylation of AMPK and increased the levels of superoxide dismutase (SOD) and total glutathione (GSH) in the livers of the control and HFD-fed rats. In conclusion, RJ attenuates NAFLD via its antioxidant potential and adiponectin-independent activation of liver AMPK.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available