4.6 Article

Magnetic Damping and Dzyaloshinskii-Moriya Interactions in Pt/Co2FeAl/MgO Systems Grown on Si and MgO Substrates

Journal

MATERIALS
Volume 16, Issue 4, Pages -

Publisher

MDPI
DOI: 10.3390/ma16041388

Keywords

Gilbert damping; magnetization relaxation; spin pumping; Heusler alloys; interfacial Dzyaloshinskii-Moriya interaction; perpendicular magnetic anisotropy

Ask authors/readers for more resources

The damping and interfacial Dzyaloshinskii-Moriya interaction (iDMI) induced by spin pumping were studied in Pt/Co2FeAl/MgO systems. The results showed that the iDMI strength and spin pumping efficiency are higher for CFA-based systems grown on MgO, suggesting that CFA grown on MgO could be a promising material for spin pumping and other spintronic applications.
Spin-pumping-induced damping and interfacial Dzyaloshinskii-Moriya interaction (iDMI) have been studied in Pt/Co2FeAl/MgO systems grown on Si or MgO substrates as a function of Pt and Co2FeAl (CFA) thicknesses. For this, we combined vibrating sample magnetometry (VSM), microstrip ferromagnetic resonance (MS-FMR), and Brillouin light scattering (BLS). VSM measurements of the magnetic moment at saturation per unit area revealed the absence of a magnetic dead layer in both systems, with a higher magnetization at saturation obtained for CFA grown on MgO. The key parameters governing the spin-dependent transport through the Pt/CFA interface, including the spin mixing conductance and the spin diffusion length, have been determined from the CFA and the Pt thickness dependence of the damping. BLS has been used to measure the spin wave non-reciprocity via the frequency mismatch between the Stokes and anti-Stokes lines. iDMI has been separated from the contribution of the interface perpendicular anisotropy difference between Pt/CFA and CFA/MgO. Our investigation revealed that both iDMI strength and spin pumping efficiency are higher for CFA-based systems grown on MgO due to its epitaxial growth confirmed by MS-FMR measurements of the in-plane magnetic anisotropy. This suggests that CFA grown on MgO could be a promising material candidate as a spin injection source via spin pumping and for other spintronic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available