4.2 Article

AN ACCURATE AND EFFICIENT DISCRETE FORMULATION OF AGGREGATION POPULATION BALANCE EQUATION

Journal

KINETIC AND RELATED MODELS
Volume 9, Issue 2, Pages 373-391

Publisher

AMER INST MATHEMATICAL SCIENCES-AIMS
DOI: 10.3934/krm.2016.9.373

Keywords

Population balances; aggregation; finite volume method; nonuniform meshes; preservation of moments

Funding

  1. Alexander von Humboldt foundation

Ask authors/readers for more resources

An efficient and accurate discretization method based on a finite volume approach is presented for solving aggregation population balance equation. The principle of the method lies in the introduction of an extra feature that is beyond the essential requirement of mass conservation. The extra feature controls more precisely the behaviour of a chosen integral property of the particle size distribution that does not remain constant like mass, but changes with time. The new method is compared to the finite volume scheme recently proposed by Forestier and Mancini (SIAM J. Sci. Comput., 34, B840 - B860). It retains all the advantages of this scheme, such as simplicity, generality to apply on uniform or nonuniform meshes and computational efficiency, and improves the prediction of the complete particle size distribution as well as of its moments. The numerical results of particle size distribution using the previous finite volume method are consistently overpredicting, which is reflected in the form of the diverging behaviour of second or higher moments for large extent of aggregation. However, the new method controls the growth of higher moments very well and predicts the zeroth moment with high accuracy. Consequently, the new method becomes a powerful tool for the computation of gelling problems. The scheme is validated and compared with the existing finite volume method against several aggregation problems for suitably selected aggregation kernels, including analytically tractable and physically relevant kernels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available