4.4 Review

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

Journal

BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Volume 14, Issue -, Pages 631-673

Publisher

BEILSTEIN-INSTITUT
DOI: 10.3762/bjnano.14.52

Keywords

antibiotics sensing; endocrinal disorders; fluorescent sensor; hormones sensors; luminescent sensor; MOF nanohybrids

Ask authors/readers for more resources

Increasing levels of antibiotics and hormones in the environment and food samples are concerning. Opto-electrochemical sensors, specifically using metal-organic frameworks (MOFs), have shown promise for detecting and monitoring these compounds due to their low cost, portability, and sensitivity. This review critically examines the capabilities of electrochemical and luminescent MOF sensors for detecting antibiotics and hormones in various samples, and discusses the challenges, recent advances, and future directions for developing stable and high-performance MOFs as commercially viable sensor materials.
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available