4.8 Article

Interface Engineering by Hydrophilic and Zincophilic Aluminum Hydroxide Fluoride for Anode-Free Zinc Metal Batteries at Low Temperature

Related references

Note: Only part of the references are listed.
Article Chemistry, Applied

Stable anode-free zinc-ion batteries enabled by alloy network- modulated zinc deposition interface

Shiyin Xie et al.

Summary: In this study, a Cu-Zn alloy network-modulated zinc deposition interface was reported for stable anode-free zinc-ion batteries (ZIBs). The alloy network can stabilize the zinc deposition interface and enhance zinc plating/stripping kinetics. The results showed that ZIBs with the alloy network-modulated zinc deposition interface demonstrated high efficiency and stability, outperforming ZIBs with unmodified zinc deposition interface.

JOURNAL OF ENERGY CHEMISTRY (2023)

Article Chemistry, Physical

Molecular deciphering of hydrophobic, Zinc-philic and robust Amino-functionalized Polysilane for Dendrite-free Zn Anode

Jingjing Dong et al.

Summary: In order to address the issues of severe electrolyte corrosion and dendrite growth in aqueous batteries, the electrolyte/Zn interface needs to be engineered. A new method of coating a dense and robust layer of polysilane functionalized by -NH2 on Zn has been developed. This layer provides alkalinity and interaction with Zn2+, enhancing hydrolysis and regulating Zn2+ flux. The results show superior mechanical property, suppressed side reactions, and uniform plating/stripping, leading to excellent electrochemical performance in both symmetrical and asymmetrical cells, even under high loading of MnO2 and limited electrolyte conditions.

ENERGY STORAGE MATERIALS (2023)

Article Chemistry, Multidisciplinary

Rational Screening of Artificial Solid Electrolyte Interphases on Zn for Ultrahigh-Rate and Long-Life Aqueous Batteries

Dongdong Wang et al.

Summary: This study proposes a feasible method for screening potential solid electrolyte interphase (SEI) materials on Zn anodes and experimentally verifies the excellent performance of Zn-3(BO3)(2) (ZBO) in Zn aqueous batteries, providing a reference for screening promising SEI materials for other metal anodes.

ADVANCED MATERIALS (2023)

Article Chemistry, Multidisciplinary

High-Capacity and Long-Life Zinc Electrodeposition Enabled by a Self-Healable and Desolvation Shield for Aqueous Zinc-Ion Batteries

Haoran Du et al.

Summary: A self-healable ion regulator (SIR) is designed to protect and guide the electrodeposition of zinc electrodes. SIR repairs cracks caused by plating/stripping and reduces water molecules in the solvated sheath of hydrated zinc ions, resulting in improved stability of the zinc electrode.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Physical

Preferred Orientation of TiN Coatings Enables Stable Zinc Anodes

Jiaxian Zheng et al.

Summary: This study demonstrates that a TiN protective coating with preferential (200) orientation can effectively suppress Zn dendritic growth and side reactions, while regulating the growth pattern of the byproduct. This provides a new pathway for achieving high-efficiency reversible Zn plating/stripping.

ACS ENERGY LETTERS (2022)

Article Chemistry, Multidisciplinary

Diminishing Interfacial Turbulence by Colloid-Polymer Electrolyte to Stabilize Zinc Ion Flux for Deep-Cycling Zn Metal Batteries

Jinqiu Zhou et al.

Summary: In this study, a colloid-polymer electrolyte (CPE) with special colloidal phase and suppressed H-2 evolution reaction (HER) is designed to diminish interfacial turbulence and boost deep Zn electrochemistry in aqueous Zn metal batteries (ZMBs). The CPE allows for homogeneous deposition of Zn2+ ions on the electrode, enabling stable operation of Zn//Cu cells and Zn//Na5V12O32 full-cell even at high capacity and current density.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Intrinsically zincophobic protective layer for dendrite-free zinc metal anode

Chunlin Xie et al.

Summary: An intrinsically zincophobic barium-titanate protective layer with a porous structure was developed to suppress zinc dendrite formation by homogenizing the ion distribution on the anode surface. The coated zinc anode exhibited long cycle life and low voltage hysteresis as a result.

CHINESE CHEMICAL LETTERS (2022)

Article Chemistry, Multidisciplinary

Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries

Fangwang Ming et al.

Summary: This work proposes a hybrid electrolyte induced by the salting-in effect as an effective strategy to achieve a highly reversible zinc anode with good stability and compatibility. By altering the solvation structure and reducing parasitic side reactions, this electrolyte ensures a stable zinc anode with excellent cycling stability.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Multidisciplinary

Anion Concentration Gradient-Assisted Construction of a Solid-Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates

Xiaofeng He et al.

Summary: The study introduces a concept of constructing an anion concentration gradient-assisted solid-electrolyte interphase for metal anodes, which enhances ionic conductivity and suppresses dendritic growth and side reactions. This new approach enables stable plating/stripping of zinc metal and shows improved cycling stability in various types of batteries and supercapacitors.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Multidisciplinary

Biomimetic Dendrite-Free Multivalent Metal Batteries

Zhijia Zhang et al.

Summary: This study demonstrates the use of a biomimetic scaffold to address the poor compatibility between metallic anodes and electrolytes in multivalent metal batteries. The designed scaffold achieves highly efficient multivalent metal plating/stripping and exhibits excellent performance.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Super-Reversible CuF2 Cathodes Enabled by Cu2+-Coordinated Alginate

Jiale Xia et al.

Summary: By forming a Cu2+-coordinated sodium alginate (Cu-SA) layer on the surface of CuF2, copper dissolution is successfully suppressed, improving the reversibility of CuF2. The CuF2 electrode with SA binder delivers a reversible capacity of 420.4 mAh g(-1) after 50 cycles, reaching an energy density of 1009.1 Wh kg(-1).

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

In Situ Formation of Nitrogen-Rich Solid Electrolyte Interphase and Simultaneous Regulating Solvation Structures for Advanced Zn Metal Batteries

Dongdong Wang et al.

Summary: N-methyl pyrrolidone (NMP) is developed as a bifunctional electrolyte additive to improve the electrochemical performance of Zn anode, protecting it from corrosion and facilitating uniform plating/stripping of Zn.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Physical

Kinetics-Boosted Effect Enabled by Zwitterionic Hydrogel Electrolyte for Highly Reversible Zinc Anode in Zinc-Ion Hybrid Micro-Supercapacitors

Wentao Zhang et al.

Summary: This study proposes a kinetics-boosted strategy for Zn2+ transport and desolvation by engineering a zwitterionic hydrogel electrolyte. The modified electrolyte shows improved electrochemical performance and cyclability for Zn anodes.

ADVANCED ENERGY MATERIALS (2022)

Article Nanoscience & Nanotechnology

Iodine Promoted Ultralow Zn Nucleation Overpotential and Zn-Rich Cathode for Low-Cost, Fast-Production and High-Energy Density Anode-Free Zn-Iodine Batteries

Yixiang Zhang et al.

Summary: The anode-free Zn-iodine battery (AFZIB) achieves high-performance cathode and optimized zinc deposition behavior through the bifunctional roles of iodine. It significantly increases energy density and exhibits durable cycle stability under practical application conditions.

NANO-MICRO LETTERS (2022)

Article Chemistry, Multidisciplinary

Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes

Huili Peng et al.

Summary: By intercalating n-butylamine into monodisperse hexagonal nanoplates of alpha-ZrP, the compatibility with hydrophobic polymers is improved, resulting in a dense and robust artificial layer on the zinc anode. This reduces direct exposure to electrolytes and suppresses side reactions, leading to improved electrochemical performance.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Review Chemistry, Physical

Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries

Sanjay Nanda et al.

Summary: The anode-free full cell configuration is ideal for high energy density and lithium storage, but poor efficiencies of lithium plating and stripping lead to short cycle life. Recent studies have shown that advanced electrolytes and other methods can stabilize lithium deposition and improve cycle life.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Stabilization Perspective on Metal Anodes for Aqueous Batteries

Huaping Wang et al.

Summary: Aqueous electrolyte-based batteries have advantages such as nonflammability, low cost, high power density, and environmental friendliness, but they suffer from low energy density due to the narrow stable electrochemical window of water and electrode materials with low capacity. Developing metal anodes with high specific capacity is seen as a promising solution to enhance the energy density of these batteries.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries

Shan Guo et al.

Summary: Electrolyte additive is a key technology in energy storage, especially for aqueous zinc-ion batteries, but there is a lack of systematic research on its features and mechanisms. A comprehensive review on commonly used zinc-ion electrolyte additives is essential for further improvements in this field.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

An Anode-Free Zn-MnO2 Battery

Yunpei Zhu et al.

Summary: Aqueous Zn-based batteries are promising due to their low cost and high capacity, but existing designs use excess Zn which reduces energy density. A new anode-free design utilizing nanocarbon nucleation layer enables uniform Zn electrodeposition with high efficiency and stability across various current densities. This innovation opens up new possibilities for implementing Zn-based batteries in energy storage systems.

NANO LETTERS (2021)

Article Chemistry, Multidisciplinary

Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long-Lifespan and Dendrite-Free Zn Metal Anodes

Yang Yang et al.

Summary: The study successfully developed a Zn@ZnF2 electrode with a multi-functional protective layer by designing a 3D interconnected ZnF2 matrix on the surface of Zn foil. This electrode exhibits stable zinc deposition kinetics and good plating/stripping reversibility, showing potential for practical application in various battery systems.

ADVANCED MATERIALS (2021)

Article Multidisciplinary Sciences

Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries

Zedong Zhao et al.

Summary: This study developed a fluorinated covalent organic framework film as a protective layer for aqueous zinc anode battery, aiming to reduce zinc dendrite growth and electrolyte corrosion, achieve horizontally arranged zinc deposition, and improve stability and cycling performance.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Multidisciplinary

Stable Aqueous Anode-Free Zinc Batteries Enabled by Interfacial Engineering

Yongling An et al.

Summary: Anode-free zinc batteries (AFZBs) have great potential as energy storage systems due to their high energy density, inherent safety, low cost, and simplified fabrication process. However, rapid capacity fading caused by side reactions hinders their practical applications. Aqueous AFZBs enabled by electrolyte engineering with a stable interphase are designed to address these issues. Introducing a multifunctional zinc fluoride (ZnF2) additive into the electrolyte helps to form a stable F-rich interfacial layer, improving cycling performance and longevity of AFZBs.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Nanoscience & Nanotechnology

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Longsheng Cao et al.

Summary: The study introduces an aqueous zinc battery with a solid-electrolyte interphase that enables excellent performance in various tests, demonstrating its potential for practical applications in energy storage.

NATURE NANOTECHNOLOGY (2021)

Article Nanoscience & Nanotechnology

Interfacial Engineering of Cu2O Passivating Contact for Efficient Crystalline Silicon Solar Cells with an Al2O3 Passivation Layer

Le Li et al.

Summary: This study demonstrates efficient p-type c-Si (p-Si) solar cells with cuprous oxide (Cu2O) hole-selective contacts, where the addition of an Al2O3 layer at the p-Si/Cu2O interface effectively reduces interfacial defects and enhances the power conversion efficiency.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Chemistry, Multidisciplinary

Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries

Dongdong Wang et al.

Summary: The porous lithiophilic polymer coating induced by phase separation of PVDF-PAN blends reported in this study can effectively stabilize the lithium metal anode, improving cycling stability and Coulombic efficiency in lithium batteries.

NANO LETTERS (2021)

Article Chemistry, Multidisciplinary

In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes

Yuzhu Chu et al.

Summary: The in situ construction of a composite SEI mainly composed of Zn-3(PO4)(2) and ZnF2 (ZCS) effectively suppresses Zn dendrite growth and accelerates Zn2+ transference and deposition kinetics in aqueous Zn-ion batteries. By taking advantage of the instability of KPF6 in an aqueous environment, an in situ ZCS is successfully built on the Zn anode through a PF6- anion-induced chemical strategy, showing enhanced reversibility and excellent electrochemical performance. This work not only paves a new way for designing a desirable SEI on the Zn anode, but also may guide the interface engineering of other systems to overcome intrinsic defects in constructing favorable interphases.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Multidisciplinary

Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials

Ming Li et al.

Summary: This study comprehensively summarizes the role of water molecules in rechargeable aqueous zinc-ion batteries, focusing on the influencing mechanisms from various perspectives. It also proposes new insights and actionable methods for the potential future directions in the design of high-performance AZIBs.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Review Chemistry, Multidisciplinary

Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries

Qi Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Chemistry, Physical

Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries

Ziyi Cao et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Physical

Anode-free rechargeable lithium metal batteries: Progress and prospects

Zhengkun Xie et al.

ENERGY STORAGE MATERIALS (2020)

Review Chemistry, Multidisciplinary

Materials chemistry for rechargeable zinc-ion batteries

Ning Zhang et al.

CHEMICAL SOCIETY REVIEWS (2020)

Review Chemistry, Physical

Scientific Challenges for the Implementation of Zn-Ion Batteries

Lauren E. Blanc et al.

JOULE (2020)

Article Materials Science, Multidisciplinary

Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles

Nirmal Kumar et al.

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T (2019)

Review Chemistry, Multidisciplinary

Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries

Shuo Huang et al.

CHEMISTRY-A EUROPEAN JOURNAL (2019)

Editorial Material Energy & Fuels

Anode-less

Ji-Guang Zhang

NATURE ENERGY (2019)

Review Chemistry, Multidisciplinary

30 Years of Lithium-Ion Batteries

Matthew Li et al.

ADVANCED MATERIALS (2018)

Review Chemistry, Multidisciplinary

Recent Advances in Zn-Ion Batteries

Ming Song et al.

ADVANCED FUNCTIONAL MATERIALS (2018)

Article Chemistry, Multidisciplinary

Anode-Free Sodium Battery through in Situ Plating of Sodium Metal

Adam P. Cohn et al.

NANO LETTERS (2017)

Article Chemistry, Multidisciplinary

Anode-Free Rechargeable Lithium Metal Batteries

Jiangfeng Qian et al.

ADVANCED FUNCTIONAL MATERIALS (2016)