4.8 Article

High-Throughput Screening of High-Entropy Fluorite-Type Oxides as Potential Candidates for Photovoltaic Applications

Journal

ADVANCED ENERGY MATERIALS
Volume 13, Issue 24, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202204337

Keywords

Hall-effect measurements; high-entropy materials; High-throughput; multicomponent materials; photoelectron spectroscopy in atmosphere; UV-vis

Ask authors/readers for more resources

High-throughput synthesis and characterization techniques are increasingly important for complex materials and advanced functional compounds. This study focuses on the compilation of high-entropy oxide material libraries with tunable band gaps for semiconductor applications. The material libraries include rare-earth oxides with 5, 6, and 7 different cations in near equimolar concentrations, as well as medium entropy ranges. The atmosphere used during synthesis affects the band gap, and multivalent rare-earth cations enable reversible tuning of the band gap between 2.0 and 3.5 eV under different atmospheres.
High-throughput (HT) synthesis and HT characterization techniques are becoming increasingly important due to the ever-increasing complexity of materials and applications of advanced functional compounds. This work reports on the high-throughput compilation of material libraries of high-entropy oxides with fluorite crystal structure and tunable band gaps to be used as, e.g., semiconductors for photovoltaic applications. The material libraries cover the high-entropy range of rare-earth oxides with 5, 6, and 7 different cations (Ce, La, Sm, Pr, Tb, Y, and Zr) in near equimolar concentrations, but also the medium entropy range with 4 cations. The atmosphere used during or after synthesis is found to have a large effect on the band gap of these materials. Multivalent rare-earth cations such as Ce/Pr/Tb enable reversible tuning of the band gap between 2.0 and 3.5 eV upon calcination under various oxidizing and reducing atmospheres. The high-entropy fluorite oxides with smaller band gaps exhibit high electron mobility and transport energy levels compatible with common solar cell architectures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available