4.8 Article

Evaluation of Hybrid Perovskite Prototypes After 10-Month Space Flight on the International Space Station

Journal

ADVANCED ENERGY MATERIALS
Volume 13, Issue 19, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202203920

Keywords

aerospace; International Space Station; light soaking; Metal halide perovskites; spectroscopy; strain; structural phase

Ask authors/readers for more resources

Metal halide perovskites (MHPs) have high power conversion efficiency and excellent stability in space, making them suitable for aerospace applications.
Metal halide perovskites (MHPs) have emerged as a prominent new photovoltaic material combining a very competitive power conversion efficiency that rivals crystalline silicon with the added benefits of tunable properties for multijunction devices fabricated from solution which can yield high specific power. Perovskites have also demonstrated some of the lowest temperature coefficients and highest defect tolerance, which make them excellent candidates for aerospace applications. However, MHPs must demonstrate durability in space which presents different challenges than terrestrial operating environments. To decisively test the viability of perovskites being used in space, a perovskite thin film is positioned in low earth orbit for 10 months on the International Space Station, which was the first long-duration study of an MHP in space. Postflight high-resolution ultrafast spectroscopic characterization and comparison with control samples reveal that the flight sample exhibits superior photo-stability, no irreversible radiation damage, and a suppressed structural phase transition temperature by nearly 65 K, broadening the photovoltaic operational range. Further, significant photo-annealing of surface defects is shown following prolonged light-soaking postflight. These results emphasize that methylammonium lead iodide can be packaged adequately for space missions, affirming that space stressors can be managed as theorized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available