4.8 Article

Reductive Enzyme Cascades for Valorization of Polyethylene Terephthalate Deconstruction Products

Journal

ACS CATALYSIS
Volume 13, Issue 7, Pages 4778-4789

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.2c06219

Keywords

plastics; polyethylene terephthalate; valorization; upcycling; reductive amination; carboxylic acid reductase; transaminase; biocatalysis

Ask authors/readers for more resources

In order to incentivize the collection of plastic wastes, chemical transformations that add value to plastic deconstruction products need to be developed. This study demonstrates the production of useful building blocks from PET deconstruction products through the design of one-pot biocatalytic transformations. By coupling the highest activity reductase with an omega-transaminase, valuable plastic building blocks can be produced efficiently.
To better incentivize the collection of plastic wastes, chemical transformations must be developed that add value to plastic deconstruction products. Polyethylene terephthalate (PET) is a common plastic whose deconstruction through chemical or biological means has received much attention. However, a limited number of alternative products have been formed from PET deconstruction, and only a small share could serve as building blocks for alternative materials or therapeutics. Here, we demonstrate the production of useful monoamine and diamine building blocks from known PET deconstruction products. We achieve this by designing one-pot biocatalytic transformations that are informed by the substrate specificity of an omega-transaminase and diverse carboxylic acid reductases (CAR) toward PET deconstruction products. We first establish that an omega-transaminase from Chromobacterium violaceum (cvTA) can efficiently catalyze amine transfer to potential PET-derived aldehydes to form monoamine para-(aminomethyl)benzoic acid (pAMBA) or diamine para-xylylenediamine (pXYL). We then identified CAR orthologs that could perform the bifunctional reduction of terephthalic acid (TPA) to terephthalaldehyde or the reduction of mono-(2-hydroxyethyl) terephthalic acid (MHET) to its corresponding aldehyde. After characterizing 17 CARs in vitro, we show that the CAR from Segniliparus rotundus (srCAR) had the highest observed activity on TPA. Given these elucidated substrate specificity results, we designed modular enzyme cascades based on coupling srCAR and cvTA in one pot with enzymatic cofactor regeneration. When we supply TPA, we achieve a 69 +/- 1% yield of pXYL, which is useful as a building block for polymeric materials. When we instead supply MHET and subsequently perform base-catalyzed ester hydrolysis, we achieve 70 +/- 8% yield of pAMBA, which is useful for therapeutic applications and as a pharmaceutical building block. This work expands the breadth of products derived from PET deconstruction and lays the groundwork for eventual valorization of waste PET to higher-value chemicals and materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available