4.8 Article

The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts

Journal

ACS CATALYSIS
Volume 13, Issue 5, Pages 3066-3084

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.2c05426

Keywords

catalysis; oxides; renewable energy; datasets; machine learning; graph convolutions; force field

Ask authors/readers for more resources

To address the lack of training data for oxide materials, researchers developed the OC22 dataset consisting of 62,331 DFT relaxations across various oxide materials. By combining the OC22 dataset with the OC20 dataset, significant improvements were achieved in energy predictions for oxide surfaces. This study provides an important benchmark for models aiming to incorporate complex electrostatic and magnetic interactions in oxide surfaces.
The development of machine learning models for electrocatalysts requires a broad set of training data to enable their use across a wide variety of materials. One class of materials that currently lacks sufficient training data is oxides, which are critical for the development of Oxygen Evolution Reaction (OER) catalysts. To address this, we developed the Open Catalyst 2022 (OC22) dataset, consisting of 62,331 Density Functional Theory (DFT) relaxations (-9,854,504 single point calculations) across a range of oxide materials, coverages, and adsorbates. We define generalized total energy tasks that enable property prediction beyond adsorption energies; we test baseline performance of several graph neural networks; and we provide predefined dataset splits to establish clear benchmarks for future efforts. In the most general task, GemNet-OC sees a -36% improvement in energy predictions when combining the chemically dissimilar Open Catalyst 2020 Data set (OC20) and OC22 datasets via fine-tuning. Similarly, we achieved a -19% improvement in total energy predictions on OC20 and a -9% improvement in force predictions in OC22 when using joint training. We demonstrate the practical utility of a top performing model by capturing literature adsorption energies and important OER scaling relationships. We expect OC22 to provide an important benchmark for models seeking to incorporate intricate long-range electrostatic and magnetic interactions in oxide surfaces. Data set and baseline models are open sourced, and a public leaderboard is available to encourage continued community developments on the total energy tasks and data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available