4.8 Article

A supramolecular gel-elastomer system for soft iontronic adhesives

Journal

NATURE COMMUNICATIONS
Volume 14, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-37535-4

Keywords

-

Ask authors/readers for more resources

In this article, the authors present a new iontronic adhesive for designing a soft iontronic gripper with self-healability, tunable adhesion, and rapid release. This adhesive provides a promising route for augmenting robotic functionalities with continuous and reversible adhesion force.
Electroadhesion in soft robotics provides controllable interfacial attraction for robotic functionalities but materials selection is limited. Here, Gao et. al. present an iontronic adhesive to design a soft iontronic gripper with self-healability, tunable adhesion at reduced voltages and rapid release. Electroadhesion provides a promising route to augment robotic functionalities with continuous, astrictive, and reversible adhesion force. However, the lack of suitable conductive/dielectric materials and processing capabilities have impeded the integration of electroadhesive modules into soft robots requiring both mechanical compliance and robustness. We present herein an iontronic adhesive based on a dynamically crosslinked gel-elastomer system, including an ionic organohydrogel as adhesive electrodes and a resilient polyurethane with high electrostatic energy density as dielectric layers. Through supramolecular design and synthesis, the dual-material system exhibits cohesive heterolayer bonding and autonomous self-healing from damages. Iontronic soft grippers that seamlessly integrate actuation, adhesive prehension, and exteroceptive sensation are devised via additive manufacturing. The grippers can capture soft and deformable items, bear high payload under reduced voltage input, and rapidly release foreign objects in contrast to electroadhesives. Our materials and iontronic mechanisms pave the way for future advancement in adhesive-enhanced multifunctional soft devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available